In this paper, the use of MEMS accelerometers for measuring mechanical vibrations is presented. Also a wide review of the literature is performed by presenting the uses of the MEMS accelerometers in a great number of applications. These sensors are known for their low prices, low power consumption and low sizes, which enhance their use in applications such as energy harvesters, monitoring processes and for educational purposes. In order to propose these sensors for measuring vibrations, a complete evaluation of the MEMS accelerometers was performed by measuring amplitudes and frequencies of oscillations and comparing their dynamic characteristics with other accelerometers with higher precision. Moreover, two experiments were conducted: In the first one, the measurements of the amplitude given by a MEMS and a standard accelerometer while being excited with sinusoidal waves with different frequencies using a vibration exciter were taken and compared. For the second experiment, three MEMS sensors and a piezoelectric accelerometer were used to measure the accelerations of a 3-DOF shear-building excited by an unbalanced DC motor. The signals obtained were compared in the time and frequency domains; for the last case, the wavelet transform, the wavelet coherence and the power spectrum density were used.
Recebido em 25 de julho de 2015. Aceito em 30 de setembro de 2015 In this paper, we use the Arduino platform together with sensors as accelerometer, gyroscope and ultrasound, to measure vibrations in mechanical systems. The main objective is to assemble a signals acquisition system easy to handle, of low cost and good accuracy for teaching purposes. It is also used the Python language and its numerical libraries for signal processing. This paper proposes the study of vibrations of a beam, which is measured by position, velocity and acceleration. An experimental setup was implemented. The results obtained are compared with analytical models and computer simulations using finite elements. The results are in agreement with the literature. Keywords: mechanical vibrations, Arduino, sensors.Neste estudo, utiliza-se a plataforma Arduino em conjunto com sensores, como acelerômetro, giroscópio e ultrassom, para medição de vibrações em sistemas mecânicos. O principal objetivo deste trabalhoé a montagem de um sistema para aquisição de sinais de fácil manuseio, baixo custo e boa precisão para fins didáticos. Utiliza-se também a linguagem Python e suas bibliotecas numéricas para processamento dos sinais. Neste trabalho propõem-se o estudo de vibrações em uma viga, em que se mede a sua posição, velocidade e aceleração. Uma montagem experimental foi implementada. Os resultados obtidos são comparados com modelos analíticos e de simulação computacional através de elementos finitos. Os resultados estão em concordância com a literatura. Palavras-chave: vibrações mecanicas, Arduino, sensores.
This paper is aimed at undergraduate students of physics, engineering and mathematics, where a methodology for mechanical vibration analysis of a multi degree of freedom (DOF) excited by an harmonic force in the time and frequency domain is presented. The Arduino microcontroller is used as an acquisition system and low-cost MEMS accelerometers for the instrumentation of the system. System of multi DOF are studied in a great number of problems in mechanical sciences, however its experimental study is not always present in the courses due to the high costs and complexity. These problems are overpassed with the study proposed in this work. Besides, the application presented has an interface with several disciplines in undergraduation and graduation level. The method proposed can be easy implemented and the results obtained had good precision and are in agreement with the literature.
Purpose: To summarize the evidence regarding the acute and chronic effects of interval training (IT) in the immune system through a systematic review with meta-analysis. Design: Systematic review with meta-analysis. Data source: English, Portuguese and Spanish languages search of the electronic databases Pubmed/Medline, Scopus, and SciELO. Eligibility criteria: Studies such as clinical trials, randomized cross-over trials and randomized clinical trials, investigating the acute and chronic effects of IT on the immune outcomes in humans. Results: Of the 175 studies retrieved, 35 were included in the qualitative analysis and 18 in a meta-analysis. Within-group analysis detected significant acute decrease after IT on immunoglobulin A (IgA) secretory rate (n = 115; MD = −15.46 µg·min−1; 95%CI, −28.3 to 2.66; p = 0.02), total leucocyte count increase (n = 137; MD = 2.58 × 103 µL−1; 95%CI, 1.79 to 3.38; p < 0.001), increase in lymphocyte count immediately after exercise (n = 125; MD = 1.3 × 103 µL−1; 95%CI, 0.86 to 1.75; p < 0.001), and decrease during recovery (30 to 180 min post-exercise) (n = 125; MD = −0.36 × 103 µL−1;−0.57 to −0.15; p < 0.001). No effect was detected on absolute IgA (n = 127; MD = 47.5 µg·mL−1; 95%CI, −10.6 to 105.6; p = 0.11). Overall, IT might acutely reduce leucocyte function. Regarding chronic effects IT improved immune function without change leucocyte count. Conclusion: IT might provide a transient disturbance on the immune system, followed by reduced immune function. However, regular IT performance induces favorable adaptations on immune function.
Enterotoxigenic Escherichia coli (ETEC) produce heat-labile (LT) and/or heat-stable enterotoxins (ST). Despite that, the mechanism of action of both toxins are well known, there is great controversy in the literature concerning the in vitro production and release of LT and, for ST, no major concerns have been discussed. Furthermore, the majority of published papers describe the use of only one or a few ETEC isolates to define the production and release of these toxins, which hinders the detection of ETEC by phenotypic approaches. Thus, the present study was undertaken to obtain a better understanding of ST and LT toxin production and release under laboratory conditions. Accordingly, a collection of 90 LT-, ST-, and ST/LT-producing ETEC isolates was used to determine a protocol for toxin production and release aimed at ETEC detection. For this, we used previously raised anti-LT antibodies and the anti-ST monoclonal and polyclonal antibodies described herein. The presence of bile salts and the use of certain antibiotics improved ETEC toxin production/release. Triton X-100, as chemical treatment, proved to be an alternative method for toxin release. Consequently, a common protocol that can increase the production and release of LT and ST toxins could facilitate and enhance the sensitivity of diagnostic tests for ETEC using the raised and described antibodies in the present work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.