It has been shown that Chinese poems can be successfully generated by sequence-to-sequence neural models, particularly with the attention mechanism. A potential problem of this approach, however, is that neural models can only learn abstract rules, while poem generation is a highly creative process that involves not only rules but also innovations for which pure statistical models are not appropriate in principle. This work proposes a memory-augmented neural model for Chinese poem generation, where the neural model and the augmented memory work together to balance the requirements of linguistic accordance and aesthetic innovation, leading to innovative generations that are still rule-compliant. In addition, it is found that the memory mechanism provides interesting flexibility that can be used to generate poems with different styles.
The least damaging and most economical method to deliver drugs or carriers into the inner ear for treatment of disease is through the middle ear. However, the retention of drug in the middle ear is an obstacle. Here, inspired by the adhesion of mussels, a methacrylate gelatin microspheres (GM) coupling polydopamine (PDA) layer (GM@PDA) with excellent adhesive ability is constructed, and Ebselen liposomes are further loaded into the GM@PDA (GM@PDA@Lipo‐Ebselen). The loading capacity of GM@PDA for Ebselen liposomes is 25 ± 1 µg mg−1 microspheres. GM@PDA@Lipo‐Ebselen could be injected on round windows membrane (RWM) and tightly adheres to the surface of RWM by PDA, and the microspheres are even still attached to the RWM after 360° rotation and inverted shaking. The in vivo imaging system shows that the adhesive microspheres can prolong the retention of the middle ear cavity for more than 7 days. The hearing of mice in the GM@PDA@Lipo‐Ebselen group is significantly recovered, especially on day 14 after noise exposure, and the hearing of each frequency is restored to baseline level. At 32 kHz frequency, the survival of outer hair cells recovers from 48 0± 6% to 93 ± 2%. Therefore, the adhesive and injectable hydrogel microspheres provide a promising strategy for the treatment of hearing loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.