Baby incubators are used for premature babies where babies are born prematurely. To ensure the accuracy of medical devices, periodic tests and controls need to be carried out aimed at reducing the risk of measurement. The baby incubator can be tested with a calibration device which is a device to calibrate temperature, noise, humidity, and airflow so that conditions remain stable and within normal limits. The purpose of this study was the development of a PC (Personal Computer) performing Incubator Analyzer with noise and airflow parameters. This type of research uses after only design. The standard incubator analyzer is not equipped with a PC and data processing via Excel, so the researchers created an Incubator Analyzer device that has four parameters to measure temperature, noise, humidity, and airflow. Using the Atmega328 Microcontroller as a data processor, equipped with sending data via Bluetooth HC-05 with data storage and output results will be displayed on a PC. Noise parameters using the Analog Sound Sensor V2 sensor and have the biggest error at 37oC setting temperature that is equal to 0.17%. While the airflow parameter uses an airflow sensor with type D6F-V3A01 and has the biggest error that is 0.5% at a temperature setting of 36oC and 37oC. The use of displays on personal computers and data processing using Excel, allows users to monitor calibration and data processing. The feasibility of this device is proven. Therefire, this design can be used for baby incubator calibration.
The phototherapy is a device used in hyperbilirubinemia therapy by using blue light radiation with ranges between 425nm-475nm. The effectiveness of hyperbilirubinemia therapy depends on the amount of energy emitted by light which expressed in μW/cm2. The purpose of this study is to develop a low-cost and high accuracy Phototherapy radiometer. Measurement of blue light irradiance using the AS7262 sensor which can measure the irradiance of visible light with a wavelength of 450nm, 500nm, 550nm, 570nm, 600nm, 650nm with relative responsiveness of 1 time at each wavelength. SD card memory is used to save measurement data of irradiance so that it can be processed later. Based on the blue light irradiance data collected the smallest error value is 0,40% at a distance of 10cm while the biggest error value is 9,01% at a distance of 30cm. After testing the entire system, the device can be used according to its function and purpose.
Electrocardiograph (ECG) menjadi salah satu ilmu diagnostik yang sering dipelajari dalam mendiagnosis dan untuk terapi penyakit jantung. Mengingat pentingnya alat ECG recorder, maka diperlukan pengecekan fungsi alat ECG recorder yaitu dengan cara melakukan prosedur kalibrasi alat menggunakan Phantom ECG. Tujuan dari penelitian ini adalah membuat ECG Simulator untuk alat ECG 12 channel yang meliputi lead I, lead II, lead III, aVR, aVF, aVL, V1, V2, V3, V4, V5, dan V6 dan melengkapinya dengan selektor pemilihan sensitivitas serta menggunakan. Metode pembentukan sinyal jantung menggunakan DAC tipe MCP 4921 dengan mikrokontroler Atmega2560 dan untuk tampilan pengaturanya menggunakan LCD Karakter 2x16. Berdasarkan hasil pengukuran didapat nilai tingkat kesalahan sebesar 0.187% sensitivitas 0.5mV dan 0.327% sensitivitas 1.0mV pada setting BPM 30, didapat nilai tingkat kesalahan sebesar 1.173% sensitivitas 0.5mV dan 1.060% sensitivitas 1.0mV pada setting BPM 60, didapat nilai tingkat kesalahan sebesar 0.797% sensitivitas 0.5mV dan 0.739% sensitivita 1.0mV pada setting BPM 120, didapat nilai tingkat kesalahan sebesar 0.269% sensitivitas 0.5mV dan 0.381% sensitivitas 1.0mV pada setting BPM 180 dan 0.010% sensitivitas 0.5mV dan 0.616% sensitivitas 1.0mV pada setting BPM 240. Modul ECG Simulator dilengkapi dengan fitur charge baterai dan biaya pembuatan yang lebih murah dibandingkan dengan alat pabrikan.
Infusion devices are the basis for primary health care, that is to provide medicine, nutrition, and hydration to patients. One of the infusion devices is a syringe pump and an infusion pump. This device is very important to assist the volume and flow that enters the patient's body, especially in situations related to neonatology or cancer treatment. Therefore, a comparison tool is needed to see whether the equipment is used or not. The purpose of this research is to make an infusion device analyzer (IDA) design with a flow rate parameter. The contribution of this research is that the tool can calculate the correct value of the flow rate that comes out of the infusion pump and syringe pump. The water released by the infusion pump or syringe pump will be converted into droplets which are then detected by the sensor. This tool uses an infrared sensor and a photodiode. The results obtained by the sensor will come by Arduino nano and code it to the 16x2 Character Liquid Crystal Display (LCD) and can be stored on an SD Card so that it can be analyzed further. In setting the flow rate for the syringe pump of 100 mL / hour, the error value is 3.9, 50 ml / hour 0.02, 20 mL / hour 0.378, 10 mL / hour 0.048, and 5 mL / hour 0.01. The results show that the average error of the syringe pump performance read by the module is 0.87. The results obtained from this study can be implemented for the calibration of the infusion pump and the syringe pump so that it can be determined whether the device is suitable or not
Human limb amputation can be caused due to congenital disabilities, accidents, and certain diseases. Amputation caused by occupational accidents is a frequent occurrence in developing countries. Meanwhile, amputation caused by certain diseases such as diabetes Miletus is also the leading cause. The need for prosthetic hand is increasing along with the increase in those two factors. Several researchers have developed prosthetic hands with advantages and disadvantages. Research on prosthetic hands, which are useful, low power, and low cost, is still a major issue. Therefore, the purpose of this paper is to provide a review of the various designs of prosthetic hands, specifically on the sensor, control, and actuator systems. This paper collected several references from proceedings and journals related to the design of the prosthetic hand. The results show that the EMG signal is widely used by some researchers in controlling prosthetic hands compared to other sensors, following the force-sensitive resistor (FSR) sensor. To control prosthetic hands, some researchers used a threshold system with a value of 20% of the maximum voluntary contraction (MVC), and several other researchers used a pattern recognition model based on the EMG signal feature. Moreover, In the mechanical part, the open-source prosthetic hand model is more widely used than the fabricate prosthetic hand. This is due to the cost required in the prosthetic hand design is cheaper than a fabricated one. The results of this review are expected to provide a recommendation to researchers in the development of low cost, low power, and practical prosthetic hands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.