Respiratory failure (apnea) often occurs in premature babies, this should be avoided because it causes low oxygen concentrations in the blood so that it can damage brain function and lead to death. Apnea is characterized by a decrease in oxygen saturation (SpO2). The purpose of this study was to design an apnea monitor that was detected with SpO2 parameters, alarms, and vibrating stimulation. This study uses infrared and red LEDs that emit light through the surface of the finger and is detected by a photodiode sensor, this light signal will be converted into an electrical signal and calculated by Arduino to determine the patient's SpO2 and BPM values. If the SpO2 value drops 5% within 5 seconds from the baseline, the device will indicate apnea has occurred and the vibrating motor is working. SpO2 signals and alarms are sent to the nurse station computer via Bluetooth HC-05. The instrument was calibrated with an SpO2 calibrator and the measurement results were compared with a BION pulse oximetry brand. The results of the instrument measurement on two subjects on the SpO2 parameter showed an error value of 2% and the BPM parameter obtained an error value of 4.54%. Testing the BPM parameter using a calibrator at the 30 and 60 BPM settings shows an error value of 0% and at the 120 BPM setting the error value is 0.01%. The vibrating motor to stimulate the baby's body when apnea occurs is functioning properly. The results showed that measurements using subjects tended to have high error values due to several factors. This research can be implemented on patient monitors to improve patient safety and reduce the workload of nurses or doctors
Factors causing premature infant mortality include the lack of simple care and inadequate equipment such as a baby incubator. Premature babies are very susceptible to heart disorders, including congenital heart defects. Congenital heart defects can cause a fetus to be born prematurely. The current research related to this matter was further conducted, aiming to develop a baby incubator with an overshoot reduction system specifically for babies with heart defects that can be monitored remotely using an IoT system. In this study, the AHT 10 sensor was used for room temperature sensing in the baby incubator. Temperature control was achieved using a closed-loop PID system. In this case, the monitoring of the baby's heart rate employed leads II to tap the heart's electrical signal. Data transmission consisted of temperature readings, ECG signals, and heart rate. The microdata was processed into digital data, which were then sent via the Raspberry Pi, then sent via the internet to access the cloud firebase. After that, the firebase data were downloaded from an Android system. The performance results showed that in the temperature test, the error value was below 5%, and the PID control made can reduce the overshoot temperature by no more than 5%. In addition, it was also determined that the steady-state error value was 2%. T-Test statistical test on the ECG signal further obtained a p-value > 0.05. Furthermore, the data transmission test using IoT did not find data loss when sending the data, and the minimum speed required for data transmission was 5 kbps. This research further implied that the user or the patient's family could easily monitor the baby's development anywhere and anytime.
Infusion devices are the basis for primary health care, that is to provide medicine, nutrition, and hydration to patients. One of the infusion devices is a syringe pump and an infusion pump. This device is very important to assist the volume and flow that enters the patient's body, especially in situations related to neonatology or cancer treatment. Therefore, a comparison tool is needed to see whether the equipment is used or not. The purpose of this research is to make an infusion device analyzer (IDA) design with a flow rate parameter. The contribution of this research is that the tool can calculate the correct value of the flow rate that comes out of the infusion pump and syringe pump. The water released by the infusion pump or syringe pump will be converted into droplets which are then detected by the sensor. This tool uses an infrared sensor and a photodiode. The results obtained by the sensor will come by Arduino nano and code it to the 16x2 Character Liquid Crystal Display (LCD) and can be stored on an SD Card so that it can be analyzed further. In setting the flow rate for the syringe pump of 100 mL / hour, the error value is 3.9, 50 ml / hour 0.02, 20 mL / hour 0.378, 10 mL / hour 0.048, and 5 mL / hour 0.01. The results show that the average error of the syringe pump performance read by the module is 0.87. The results obtained from this study can be implemented for the calibration of the infusion pump and the syringe pump so that it can be determined whether the device is suitable or not
<p><em>Sensor pengukuran kecepatan putaran motor adalah alat yang digunakan di sebagian besar mesin-mesin industri yang bekerja berdasarkan perputaran motor untuk memonitoring kecepatan motor tersebut. Dimana salah satu sensor yang digunakan dalam pengukuran kecepatan motor adalah sensor optocoupler. Informasi tentang laju perputaran motor diperlukan oleh seorang operator untuk mengontrol dan mengatur laju putaran motor sesuai dengan yang diharapkan. Pada proyek akhir ini digunakan optocoupler sebagai sensor pengukur kecepatan putaran motor dan potensiometer digunakan sebagai pengontrol kecepatan motor. Dari pengontrolan dan pembacaan pulsa optocoupler data diolah di mikrokontroler setelah itu data dikirim dan ditampilkan di LCD dalam satuan RPM (Rotation Per Minute). Dari hasil pengujian yang telah dilakukan Tingkat keakurasian hasil pembacaan didapatkan dalam kondisi hampir mendekati kecepatan maksimum dan pada saat kecepatan maksimum. Dimana pada motor 1 kecepatan putaran maksimalnya 250 RPM dimana error yang didapat 4 % serta dan motor 2 kecepatan maksimalnya 180 RPM dimana error yang didapat 2,97 %.</em></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.