In this paper, we propose a new method of global optimal design with simulated annealing (SA) for microelectromechanical systems (MEMS) devices. The optimal design of MEMS devices, with a microgyroscope as our device example, has been carried out to find the maximum sensitivity satisfying constraints imposed by functional and geometrical constraints. The optimization algorithm (SA) used is essentially an iterative random search procedure with adaptive moves along the coordinate directions. It permits downhill moves under the control of a probabilistic criterion, thus tending to avoid the first local maxima encountered. The optimization results are verified and validated with the finite element method (FEM) and the boundary element method (BEM) IntelliSuite™ results and measured data. When compared with Microsoft Excel Solver™ (generalized reduced gradient algorithm), our SA-based optimization approach exhibits promising superiority, and finds the global solution easily. There is also good agreement among the numerical computation results generated by the SA algorithm, the simulation results generated by IntelliSuite™, and the measured data.
MEMS for Portable ApplicationsThe 21 st century requires innovative solutions to meet the ever increasing demand for ultra portable and highly efficient energy technologies. Micro-electro-mechanical Systems (MEMS) have shown significant promise in providing robust, low-cost transduction capabilities. MEMS sensors and actuators are ideally suited for small-scale energy harvesting and power generation applications where overall device dimensions are critical. Furthermore, MEMS technology can also be harnessed for large scale energy applications by augmenting these systems with sensing and actuation capabilities in order to improve energy efficiency and reduce costs. This paper highlights some current MEMS research for energy applications and also explores some areas of the energy industry which might benefit from integration withMEMS.
This work is a continuation of previous investigations aimed at developing an innovative microfabricated air-cooling technology that employs an electrohydrodynamic corona discharge (i.e. ionic wind pump) [1], [2]. This technology enables the miniaturization of cooling systems for next generation electronics. Our single ionic wind pump element consists of two parallel collecting electrodes between which a single emitting tip is positioned. Two-dimensional (2-D) and three-dimensional (3-D) simulations using COMSOL Multiphysics™ are additionally employed to predict the temperature distribution, the flow field, and the heat removal capacity of the device in operation. One such model utilizes a small gap between collector and emitter electrodes and demonstrates an improvement in the COP (coefficient of performance) of a single device. Comparisons are made with experimental temperature data on an actual device. The purpose of this work is therefore to optimize the performance of a single microfabricated ionic wind pump to enable the development of an array of these elements for use in larger-scale heat transfer applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.