The concept of the cloud-to-thing continuum addresses advancements made possible by the widespread adoption of cloud, edge, and IoT resources. It opens the possibility of combining classical symbolic AI with advanced machine learning approaches in a meaningful way. In this paper, we present a thing registry and an agent-based orchestration framework, which we combine to support semantic orchestration of IoT use cases across several federated cloud environments. We use the concept of virtual sensors based on machine learning (ML) services as abstraction, mediating between the instance level and the semantic level. We present examples of virtual sensors based on ML models for activity recognition and describe an approach to remedy the problem of missing or scarce training data. We illustrate the approach with a use case from an assisted living scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.