Based on a large network of continuously operated GNSS tracking stations the International GNSS Service (IGS) has a valuable contribution for the realization of the International Terrestrial Reference System (ITRS). In order to contribute to its next realization, the IGS is preparing for a new reprocessing of the GNSS data from 1994 to 2020 including GPS, GLONASS, and – for the first time – Galileo. A first test campaign including single- and multi-system solutions for 2017 and 2018 was performed to derive consistent transmitter phase center corrections for all systems. Preliminary results of the test solutions derived at GFZ show well determined orbits with overlaps of 28 mm for GPS, 67 mm for GLONASS, and 40 mm for Galileo and an overall RMS of satellite laser ranging residuals for Galileo of 58 mm. Using multi-GNSS antenna calibrations (including also E5a and E5b calibrations) horizontal coordinate differences are almost zero between a GPS+GLONASS and a Galileo-only solutions. Due to the mixture of estimated (GPS, GLONASS) and measured (Galileo) transmitter phase center offsets a scale difference of 1.16 ± 0.27 ppb is found between both solutions which agrees nicely to results derived by other analysis centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.