Previous studies in school children have demonstrated the slow development with age of resistance to reinfection after chemotherapy of Schistosoma mansoni infections, and have indicated that inappropriate ("blocking") antibody responses prevent the expression of immunity in young children. The present study was designed to investigate further the nature of the protective responses, by serological studies on a group of 151 S. mansoni-infected individuals resident in an endemic area in Machakos District, Kenya. Antibody levels against various antigens in blood samples before treatment were related to intensity of previous infections; antibodies in blood samples taken 6 months after treatment were related to cumulative reinfection rates over the following 30 months. IgE against an adult-worm antigen preparation correlated positively with age and negatively with reinfection. In contrast, IgE antibodies against other life-cycle stages showed either no relationship or the reverse correlation. Furthermore, antibodies of other isotypes against adult-worm antigens showed no correlations with reinfection. The correlation with IgE could be demonstrated for different preparations of adult worms, including a periodate-treated preparation presumptively depleted of carbohydrate epitopes. For both the intact and the periodate-treated preparations, multiple regression analysis of the results for children less than or equal to 16 years old demonstrated an IgE effect after allowing for age, although this effect was not observed in a previously studied group of school children. Western blot analysis of the adult-worm preparation revealed a limited set of antigens recognized by IgE, among which an antigen of 22 kDa was prominent. The qualitative presence of IgE against this antigen could also be shown to be related to a lack of subsequent reinfection.
In immature thymocytes, T cell receptor for antigen (TCR) mobilization leads to an active T cell suicide process, apoptosis, which is involved in the selection of the T cell repertoire. We have proposed that inappropriate induction of such a cell death program in the mature CD4+ T cell population could account for both early qualitative and late quantitative CD4+ T lymphocyte defects of human immunodeficiency virus (HIV)-infected individuals (Ameisen, J.C., and A. Capron. 1991. Immunol. Today. 4:102). Here, we report that the selective failure of CD4+ T cells from 59 clinically asymptomatic HIV-infected individuals to proliferate in vitro to TCR mobilization by major histocompatibility complex class II-dependent superantigens and to pokeweed mitogen (PWM) is due to an active CD4+ T cell death process, with the biochemical and ultrastructural features of apoptosis. Activation-induced cell death occurred only in the CD4+ T cell population from HIV-infected asymptomatic individuals and was not observed in T cells from any of 58 HIV-seronegative controls, including nine patients with other acute or chronic infectious diseases. Activation-induced CD4+ T cell death was prevented by cycloheximide, cyclosporin A, and a CD28 monoclonal antibody (mAb). The CD28 mAb not only prevented apoptosis but also restored T cell proliferation to stimuli, including PWM, superantigens, and the tetanus and influenza recall antigens. These findings may have implications for the understanding of the pathogenesis of acquired immune deficiency syndrome and for the design of specific therapeutic strategies.
We have characterized the adaptations of Helicobacter pylori to a rarely captured event in the evolution of its impact on host biology-the transition from chronic atrophic gastritis (ChAG) to gastric adenocarcinoma-and defined the impact of these adaptations on an intriguing but poorly characterized interaction between this bacterium and gastric epithelial stem cells. Bacterial isolates were obtained from a single human host colonized with a single dominant strain before and after his progression from ChAG to gastric adenocarcinoma during a 4-year interval. Draft genome assemblies were generated from two isolates, one ChAG-associated, the other cancer-associated. The cancer-associated strain was less fit in a gnotobiotic transgenic mouse model of human ChAG and better able to establish itself within a mouse gastric epithelial progenitorderived cell line (mGEP) that supports bacterial attachment. GeneChip-based comparisons of the transcriptomes of mGEPs and a control mouse gastric epithelial cell line revealed that, upon infection, the cancer-associated strain regulates expression of GEP-associated signaling and metabolic pathways, and tumor suppressor genes associated with development of gastric cancer in humans, in a manner distinct from the ChAG-associated isolate. The effects on GEP metabolic pathways, some of which were confirmed in gnotobiotic mice, together with observed changes in the bacterial transcriptome are predicted to support aspects of an endosymbiosis between this microbe and gastric stem cells. These results provide insights about how H. pylori may adapt to and influence stem cell biology and how its intracellular residency could contribute to gastric tumorigenesis. microbial pathogenesis ͉ intracellular bacteria ͉ genome sequencing ͉ functional genomics ͉ gnotobiotic mice
Among the many possible mediators of the early asthmatic response, prostaglandin D2, a bronchoconstrictor, is the principal cyclooxygenase metabolite of arachidonic acid that is released upon the activation of mast cells and is also synthesized by human alveolar macrophages. We performed bronchoalveolar lavage in five patients with chronic stable asthma, before and up to nine minutes after local provocative challenge with Dermatophagoides pteronyssinus. The lavage fluid was analyzed for products of arachidonic acid metabolism. Prostaglandin D2 levels in all five patients rose an average of 150-fold, from less than 8 to 332 +/- 114 pg per milliliter (mean +/- SEM; P less than 0.050), after local instillation of the antigen. Levels of 15-hydroxyeicosatetraenoic acid, which may also have a role in the pulmonary allergic response, were detectable in lavage fluid before challenge and increased after provocation with the antigen in four of the five patients. The activity of beta-glucuronidase, an enzyme released by macrophages and mast cells upon stimulation, tended to increase in the lavage fluid after provocation in all patients. These studies provide evidence that the release of prostaglandin D2 into the airways is an early event after the instillation of D. pteronyssinus in patients who are sensitive to this antigen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.