Abstract. Given two oriented points in the plane, we determine and compute the shortest paths of bounded curvature joining them. This problem has been solved recently by Dubins in the no-cusp case, and by Reeds and Shepp otherwise. We propose a new solution based on the minimum principle of Pontryagin. Our approach simplifies the proofs and makes clear the global or local nature of the results.
In this paper, we propose an algorithm to compute the Delaunay triangulation of a set [Formula: see text] of n points in 3-dimensional space when the points lie in 2 planes. The algorithm is output-sensitive and optimal with respect to the input and the output sizes. Its time complexity is O(n log n+t), where t is the size of the output, and the extra storage is O(n).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.