A Puiseux monoid is an additive submonoid of the real line consisting of rationals. We say that a Puiseux monoid is reciprocal if it can be generated by the reciprocals of the terms of a strictly increasing sequence of pairwise relatively primes positive integers. We say that a commutative and cancellative (additive) monoid is atomic if every non-invertible element x can be written as a sum of irreducibles. The number of irreducibles in this sum is called a length of x. In this paper, we identify and investigate generalized classes of reciprocal Puiseux monoids that are atomic. Moreover, for the atomic monoids in the identified classes, we study the ascending chain condition on principal ideals and also the sets of lengths of their elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.