Purpose:To optimize intravoxel incoherent motion (IVIM) diffusion-weighted (DW) imaging by estimating the effects of diffusion gradient polarity and breathing acquisition scheme on image quality, signal-to-noise ratio (SNR), IVIM parameters, and parameter reproducibility, as well as to investigate the potential of IVIM in the detection of hepatic fibrosis.
Materials and Methods:In this institutional review board-approved prospective study, 20 subjects (seven healthy volunteers, 13 patients with hepatitis C virus infection; 14 men, six women; mean age, 46 years) underwent IVIM DW imaging with four sequences: (a) respiratory-triggered ( Mixed-model analysis of variance was used to compare image quality, SNR, IVIM parameters, and interexamination variability between the four sequences, as well as the ability to differentiate areas of liver fibrosis from normal liver tissue.
Results:Image quality with RT sequences was superior to that with FB acquisitions (P = .02) and was not affected by gradient polarity. SNR did not vary significantly between sequences. IVIM parameter reproducibility was moderate to excellent for PF and D, while it was less reproducible for D*. PF and D were both significantly lower in patients with hepatitis C virus than in healthy volunteers with the RT BP sequence (PF = 13.5% 6 5.
Conclusion:The RT BP DW imaging sequence had the best results in terms of image quality, reproducibility, and ability to discriminate between healthy and fibrotic liver with biexponential fitting.q RSNA, 2012
The purpose of this work was to validate ventilation-weighted (VW) and perfusion-weighted (QW) Fourier decomposition (FD) magnetic resonance imaging (MRI) with hyperpolarized (3)He MRI and dynamic contrast-enhanced perfusion (DCE) MRI in a controlled animal experiment. Three healthy pigs were studied on 1.5-T MR scanner. For FD MRI, the VW and QW images were obtained by postprocessing of time-resolved lung image sets. DCE acquisitions were performed immediately after contrast agent injection. (3)He MRI data were acquired following the administration of hyperpolarized helium and nitrogen mixture. After baseline MR scans, pulmonary embolism was artificially produced. FD MRI and DCE MRI perfusion measurements were repeated. Subsequently, atelectasis and air trapping were induced, which followed with FD MRI and (3)He MRI ventilation measurements. Distributions of signal intensities in healthy and pathologic lung tissue were compared by statistical analysis. Images acquired using FD, (3)He, and DCE MRI in all animals before the interventional procedure showed homogeneous ventilation and perfusion. Functional defects were detected by all MRI techniques at identical anatomical locations. Signal intensity in VW and QW images was significantly lower in pathological than in healthy lung parenchyma. The study has shown usefulness of FD MRI as an alternative, noninvasive, and easily implementable technique for the assessment of acute changes in lung function.
MR-guided transrectal prostate biopsy is currently a time-consuming procedure because the imaging slice is often manually realigned with the biopsy needle during lesion targeting. In this work a pulse sequence is presented that automatically follows a passive marker attached to a dedicated MR biopsy device holder, thus providing an alternative to existing active tracking methods. In two orthogonal tracking FLASH images of the marker the position of the needle axis is automatically identified using a phase-only cross-correlation (POCC) algorithm. The position information is then used to realign a trueFISP imaging slice in real time. In phantom experiments the sensitivity of this technique to initial misalignments of the marker and to the signal-to-noise ratio was evaluated. In several puncture experiments the precision of the needle placement was analyzed. The POCC algorithm allowed for a precise identification of the marker in the images even under severe initial misalignments of up to 45°. At a frame rate 1 image/s a precision of the needle placement of 1.5 ؎ 1.1 mm could be achieved. Magn Reson Med 59:1043-1050, 2008.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.