Cell-cell communication is essential for coordinating physiological responses in multicellular organisms and is required for various developmental processes, including cell migration, differentiation, and fusion. To facilitate communication, functional differences are usually required between interacting cells, which can be established either genetically or developmentally. However, genetically identical cells in the same developmental state are also capable of communicating, but must avoid self-stimulation. We hypothesized that such cells must alternate their physiological state between signal sending and receiving to allow recognition and behavioral changes. To test this hypothesis, we studied cell communication in the filamentous fungus Neurospora crassa, a simple and experimentally amenable model system. In N. crassa, germinating asexual spores (germlings) of identical genotype chemotropically sense others in close proximity, show attraction-mediated directed growth, and ultimately undergo cell fusion. Here, we report that two proteins required for cell fusion, a MAP kinase (MAK-2) and a protein of unknown molecular function (SO), exhibit rapid oscillatory recruitment to the plasma membranes of interacting germlings undergoing chemotropic interactions via directed growth. Using an inhibitable MAK-2 variant, we show that MAK-2 kinase activity is required both for chemotropic interactions and for oscillation of MAK-2 and SO to opposing cell tips. Thus, N. crassa germlings undergoing chemotropic interactions rapidly alternate between two different physiological states, associated with signal delivery and response. Such spatiotemporal coordination of signaling allows genetically identical and developmentally equivalent cells to avoid self-stimulation and to coordinate their behavior to achieve the beneficial physiological outcome of cell fusion.chemotropism ͉ MAPK ͉ Neurospora
Cell-cell fusion in sexually reproducing organisms is a mechanism to merge gamete genomes, and in multicellular organisms, it is a strategy to sculpt organs such as muscles, bones, and placenta. Moreover, this mechanism has been implicated in pathological conditions such as infection and cancer. Study of genetic model organisms has uncovered a unifying principle: cell fusion is a genetically programmed process. This process can be divided in three stages: (i) competence: cell induction and differentiation, (ii) commitment: cell determination, migration and adhesion, and (iii) cell fusion: membrane merging and cytoplasmic mixing. Recent work has led to the discovery of fusogens, cell fusion proteins that are necessary and sufficient to fuse cell membranes. Two unrelated families of fusogens have been discovered, one in mouse placenta and one in Caenorhabditis elegans (Syncytins and F proteins, respectively). Current research aims to identify new fusogens and determine the mechanisms by which fusogens merge membranes.
The process of cell fusion is a basic developmental feature found in most eukaryotic organisms. In filamentous fungi, cell fusion events play an important role during both vegetative growth and sexual reproduction. We employ the model organism Neurospora crassa to dissect the mechanisms of cell fusion and cell-cell communication involved in fusion processes. In this study, we characterized a mutant with a mutation in the gene so, which exhibits defects in cell fusion. The so mutant has a pleiotropic phenotype, including shortened aerial hyphae, an altered conidiation pattern, and female sterility. Using light microscopy and heterokaryon tests, the so mutant was shown to possess defects in germling and hyphal fusion. Although so produces conidial anastomosis tubes, so germlings did not home toward wild-type germlings nor were wild-type germlings attracted to so germlings. We employed a trichogyne attraction and fusion assay to determine whether the female sterility of the so mutant is caused by impaired communication or fusion failure between mating partners. so showed no defects in attraction or fusion between mating partners, indicating that so is specific for vegetative hyphal fusion and/or associated communication events. The so gene encodes a protein of unknown function, but which contains a WW domain; WW domains are predicted to be involved in protein-protein interactions. Database searches showed that so was conserved in the genomes of filamentous ascomycete fungi but was absent in ascomycete yeast and basidiomycete species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.