The basic unit of skeletal muscle in all metazoans is the multinucleate myofiber, within which individual nuclei are regularly positioned1. The molecular machinery responsible for myonuclear positioning is not known. Improperly positioned nuclei are a hallmark of numerous muscles diseases2, including centronuclear myopathies3, but it is unclear whether correct nuclear positioning is necessary for muscle function. Here we identify the microtubule-associated protein Ensconsin(Ens)/MAP7 and Kinesin Heavy Chain (Khc)/Kif5b as essential, evolutionary conserved regulators of myonuclear positioning in Drosophila and cultured mammalian myotubes. We find that these proteins physically interact and that expression of the Kif5b motor domain fused to the MAP7 microtubule binding domain rescues nuclear positioning defects in MAP7 depleted cells. This suggests that MAP7 links Kif5b to the microtubule cytoskeleton to promote nuclear positioning. Finally we demonstrate that myonuclear positioning is physiologically important. Drosophila ens mutant larvae display decreased locomotion and incorrect myonuclear positioning, and these phenotypes are rescued by muscle specific expression of Ens. We conclude that improper nuclear positioning contributes to muscle dysfunction in a cell autonomous fashion.
Myoblast fusion is crucial for formation and repair of skeletal muscle. Here we show that active remodeling of the actin cytoskeleton is essential for fusion in Drosophila. Using live imaging, we have identified a dynamic F-actin accumulation (actin focus) at the site of fusion. Dissolution of the actin focus directly precedes a fusion event. Whereas several known fusion components regulate these actin foci, others target additional behaviors required for fusion. Mutations in kette/Nap1, an actin polymerization regulator, lead to enlarged foci that do not dissolve, consistent with the observed block in fusion. Kette is required to positively regulate SCAR/WAVE, which in turn activates the Arp2/3 complex. Mutants in SCAR and Arp2/3 have a fusion block and foci phenotype, suggesting that Kette-SCAR-Arp2/3 participate in an actin polymerization event required for focus dissolution. Our data identify a new paradigm for understanding the mechanisms underlying fusion in myoblasts and other tissues.
Ras signaling elicits diverse outputs, yet how Ras specificity is generated remains incompletely understood. We demonstrate that Wingless (Wg) and Decapentaplegic (Dpp) confer competence for receptor tyrosine kinase-mediated induction of a subset of Drosophila muscle and cardiac progenitors by acting both upstream of and in parallel to Ras. In addition to regulating the expression of proximal Ras pathway components, Wg and Dpp coordinate the direct effects of three signal-activated (dTCF, Mad, and Pointed-functioning in the Wg, Dpp, and Ras/MAPK pathways, respectively) and two tissue-restricted (Twist and Tinman) transcription factors on a progenitor identity gene enhancer. The integration of Pointed with the combinatorial effects of dTCF, Mad, Twist, and Tinman determines inductive Ras signaling specificity in muscle and heart development.
Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals, myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, the nuclei are often clustered within the center of the muscle cell. Although this phenotype has been acknowledged for several decades, it is often ignored as a contributor to muscle weakness. Rather, these nuclei are taken only as a sign of muscle repair. Here we review the evidence that mispositioned myonuclei are not merely a symptom of muscle disease but also a cause. Additionally, we review the working models for how myonuclei move from two different perspectives: from that of the nuclei and from that of the cytoskeleton. We further compare and contrast these mechanisms with the mechanisms of nuclear movement in other cell types both to draw general themes for nuclear movement and to identify muscle-specific considerations. Finally, we focus on factors that can be linked to muscle disease and find that genes that regulate myonuclear movement and positioning have been linked to muscular dystrophy. Although the cause-effect relationship is largely speculative, recent data indicate that the position of nuclei should no longer be considered only a means to diagnose muscle disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.