Background: Bronchopulmonary dysplasia continues to cause important respiratory morbidity throughout life, and new therapies are needed. The common denominator of all BPD cases is preterm birth, however most preclinical research in this area focusses on the effect of hyperoxia or mechanical ventilation. In this study we investigated if and how prematurity affects lung structure and function in neonatal rabbits. Methods: Pups were delivered on either day 28 or day 31. For each gestational age a group of pups was harvested immediately after birth for lung morphometry and surfactant protein B and C quantification. All other pups were hand raised and harvested on day 4 for the term pups and day 7 for the preterm pups (same corrected age) for lung morphometry, lung function testing and qPCR. A subset of pups underwent microCT and dark field imaging on day 0, 2 and 4 for terms and on day 0, 3, 5 and 7 for preterms. Results: Preterm pups assessed at birth depicted a more rudimentary lung structure (larger alveoli and thicker septations) and a lower expression of surfactant proteins in comparison to term pups. MicroCT and dark field imaging revealed delayed lung aeration in preterm pups, in comparison to term pups. Preterm birth led to smaller pups, with smaller lungs with a lower alveolar surface area on day 7/day 4. Furthermore, preterm birth affected lung function with increased tissue damping, tissue elastance and resistance and decreased dynamic compliance. Expression of vascular endothelial growth factor (VEGFA) was significantly decreased in preterm pups, however in the absence of structural vascular differences.Conclusions: Preterm birth affects lung structure and function at birth, but also has persistent effects on the developing lung. This supports the use of a preterm animal model, such as the preterm rabbit, for preclinical research on BPD. Future research that focuses on the identification of pathways that are involved in in-utero lung development and disrupted by pre-term birth, could lead to novel therapeutic strategies for BPD.
Bronchopulmonary dysplasia (BPD) remains a frequent and disabling consequence of preterm birth, despite the recent advances in neonatal intensive care. There is a need to further improve outcomes and many novel therapeutic or preventive strategies are therefore investigated in animal models. We discuss in this review the aspects of human BPD pathophysiology and phenotype, which ideally should be mimicked by an animal model for this disease. Prematurity remains the common denominator in the heterogeneous spectrum of human BPD, and preterm animal models thus have a clear translational advantage. Additional factors, like excessive oxygen, mechanical ventilation and infection, which frequently have been studied in animal models, can contribute to preterm lung injury however are not indispensable to develop BPD. The phenotype of human BPD is characterized by alveolar developmental arrest with extracellular matrix remodeling, signs of obstructive airway disease and pulmonary vascular disease. Many animal models mimic this phenotype and have their place in BPD research, but results should be interpreted bearing in mind the specific advantages and disadvantages of the model. Term mice and rats are well suited for basic explorative research on specific disease mechanisms, essential for the generation of new hypotheses, while the larger ventilated preterm baboons and lambs provide a good platform for the ultimate translation of these strategies towards clinical application. The preterm rabbit model seems a promising model as it the smallest model that includes a factor of prematurity and has a unique position between the small and large animal models.
A significant proportion of preterm infants develop bronchopulmonary dysplasia (BPD) leading to poor lifelong respiratory health. Limited treatment options exist with continuous positive airway pressure (CPAP) ventilation being one of the few associated with diminished BPD. However, little is known about the effect of the distending pressure of CPAP on the developing lung exposed to hyperoxia. We aimed to identify the functional and structural effects of CPAP in a preterm hyperoxia rabbit model of BPD. Premature rabbit pups were randomized to normoxia, hyperoxia (≥95% O2), or hyperoxia plus 4 h daily CPAP [fraction of inspired oxygen (FiO2) 0.95, 5 cmH2O]. On day 7 postdelivery we performed invasive pressure-volume- and forced oscillation-based pulmonary function tests, before lung harvest for histological evaluation. Alveolar and vascular morphology, airway smooth muscle content, respiratory epithelium height, extracellular matrix components, and inflammatory cytokine expression were quantified. Hyperoxia-reared pups had restrictive lungs: alveolar walls were thickened, with the lung parenchymal tissue, collagen content, and airway smooth muscle content increased. In addition, peripheral pulmonary artery wall thickness was increased. CPAP increased alveolar recruitment and limited the structural effect of hyperoxia on the respiratory epithelium and pulmonary arteries. Additionally, CPAP improved lung function, mitigating hyperoxia-associated changes to respiratory system resistance, tissue damping, and tissue elastance. Hyperoxia disrupted functional and structural lung development. Daily intermittent CPAP limited hyperoxia-associated decreased lung function and attenuated structural changes to pulmonary arteries and respiratory epithelium while having no structural alveolar consequences. The mechanism by which CPAP has these beneficial effects needs further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.