This paper presents and discusses the implementation results of a model-predictive control (MPC) scheme with friction compensation applied to trajectory following of an omnidirectional three-wheeled robot. A cascade structure is used with an inverse kinematics block to generate the velocity references given to the predictive controller. Part of the control effort is used to compensate for the effects of static friction, allowing the use of efficient algorithms for linear MPC with constraints. Experimental results show that the proposed strategy is efficient in compensating for frictional effects as well as for tracking predefined trajectories.
a b s t r a c tIn this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
The Industry 4.0 paradigm, since its initial conception in Germany in 2011, has extended its scope and adoption to a broader set of technologies. It is being considered as the most vital mechanism in the production systems lifecycle. It is the key element in the digital transformation of manufacturing industry all over the world. This scenario imposes a set of major unprecedented challenges which require to be overcome. In order to enable integration in horizontal, vertical, and end-to-end formats, one of the most critical aspects of this digital transformation process consists of effectively coupling digital integrated service/products business models with additive manufacturing processes. This integration is based upon advanced AI-based tools for decentralized decision-making and for secure and trusted data sharing in the global value. This paper presents the FASTEN IIoT Platform, which targets to provide a flexible, configurable, and open solution. The platform acts as an interface between the shop floor and the industry 4.0 advanced applications and solutions. Examples of these efforts comprise management, forecasting, optimization, and simulation, by harmonizing the heterogeneous characteristics of the data sources involved while meeting real-time requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.