In
Escherichia coli
, tetracycline prevents translation. When subject to tetracycline,
E. coli
express TetA to pump it out by a mechanism that is sensitive, while fairly independent of cellular metabolism. We constructed a target gene, P
tetA
-mRFP1-96BS, with a 96 MS2-GFP binding site array in a single-copy BAC vector, whose expression is controlled by the tetA promoter. We measured the
in vivo
kinetics of production of individual RNA molecules of the target gene as a function of inducer concentration and temperature. From the distributions of intervals between transcription events, we find that RNA production by P
tetA
is a sub-Poissonian process. Next, we infer the number and duration of the prominent sequential steps in transcription initiation by maximum likelihood estimation. Under full induction and at optimal temperature, we observe three major steps. We find that the kinetics of RNA production under the control of P
tetA
, including number and duration of the steps, varies with induction strength and temperature. The results are supported by a set of logical pairwise Kolmogorov-Smirnov tests. We conclude that the expression of TetA is controlled by a sequential mechanism that is robust, whereas sensitive to external signals.
The amount of mutual information contained in the time series of two elements gives a measure of how well their activities are coordinated. In a large, complex network of interacting elements, such as a genetic regulatory network within a cell, the average of the mutual information over all pairs, , is a global measure of how well the system can coordinate its internal dynamics. We study this average pairwise mutual information in random Boolean networks (RBNs) as a function of the distribution of Boolean rules implemented at each element, assuming that the links in the network are randomly placed. Efficient numerical methods for calculating show that as the number of network nodes, N, approaches infinity, the quantity N exhibits a discontinuity at parameter values corresponding to critical RBNs. For finite systems it peaks near the critical value, but slightly in the disordered regime for typical parameter variations. The source of high values of N is the indirect correlations between pairs of elements from different long chains with a common starting point. The contribution from pairs that are directly linked approaches zero for critical networks and peaks deep in the disordered regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.