Recent studies suggest a role for autophagy in the secretion of IL-1 cytokines regulating the development of inflammatory diseases. The antimalarial drug and autophagy/lysosome inhibitor chloroquine (CHQ) is considered as potential trigger of drug-induced or drug-aggravated psoriasis, in which Th17 cells sustain a persistent inflammation. In this study, we investigated the effect of CHQ on human monocyte-derived Langerhans-like cells (MoLC) and dendritic cells (MoDC) in response to IL-1β. The presence of CHQ reduced IL-12p70 release in both subsets, but surprisingly increased IL-6 production in MoDC and IL-23 in MoLC. Importantly, CHQ-treated MoLC promoted IL-17A secretion by CD4+ T cells and elevated RORC mRNA levels, whereas IFN-γ release was reduced. The dysregulation of IL-12 family cytokines in MoLC and MoDC occurred at the transcriptional level. Similar effects were obtained with other late autophagy inhibitors, whereas PI3K inhibitor 3-methyladenine failed to increase IL-23 secretion. The modulated cytokine release was dependent on IL-1 cytokine activation and abrogated by a specific IL-1R antagonist. CHQ elevated expression of TNFR-associated factor 6, a common intermediate in IL-1R and TLR-dependent signaling. Accordingly, treatment with Pam3CSK4 and CHQ enhanced IL-23 release in MoLC and MoDC. CHQ inhibited autophagic flux, confirmed by increased LC3-II and p62 expression, and activated ERK, p38, and JNK MAPK, but only inhibition of p38 abrogated IL-23 release by MoLC. Thus, our findings indicate that CHQ modulates cytokine release in a p38-dependent manner, suggesting an essential role of Langerhans cells and dendritic cells in CHQ-provoked psoriasis, possibly by promoting Th17 immunity.
(2017) Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes, Nanotoxicology, 11:2, 267-277, DOI: 10.1080/17435390.2017 ABSTRACTNovel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery. ARTICLE HISTORY
Dendritic cells (DC) are professional antigen presenting cells and link the innate and adaptive immune system. During steady state immune surveillance in skin, DC act as sentinels against commensals and invading pathogens. Under pathological skin conditions, inflammatory cytokines, secreted by surrounding keratinocytes, dermal fibroblasts, and immune cells, influence the activation and maturation of different DC populations including Langerhans cells (LC) and dermal DC. In this review we address critical differences in human DC subtypes during inflammatory settings compared to steady state. We also highlight the functional characteristics of human DC subsets in inflammatory skin environments and skin diseases including psoriasis and atopic dermatitis. Understanding the complex immunoregulatory role of distinct DC subsets in inflamed human skin will be a key element in developing novel strategies in anti-inflammatory therapy.
SummaryThe specific function of human skin-resident dendritic cell (DC) subsets in the regulation of immunity or tolerance is still a matter of debate. Langerhans cells (LC) induce anti-viral immune responses but, conversely to dermal DC, maintain tolerance to bacteria. However, the definite function of epidermal LC and cutaneous DC appears even more complex under inflammatory conditions. Here we investigated the immune responses of human immature monocyte-derived DC (MoDC) and LC-like cells (MoLC) upon stimulation with different Toll-like receptor ligands in the presence or absence of pro-inflammatory cytokines tumour necrosis factor-a (TNF-a) and interleukin-1b (IL-1b). In MoDC, bacterial antigens selectively up-regulated CD83 and CD86 expression and induced the release of T helper type 1 (Th1) and Th17 cytokines and led to a higher CCR7-dependent migratory capacity compared with a low responsiveness of MoLC. Importantly, MoLC activation with lipopolysaccharide under inflammatory conditions strongly enhanced a phenotypically mature state, increased IL-12p70, IL-23 and IL-6 production and Th1 cytokine secretion by CD4 + T cells. Treatment with poly(I:C) specifically up-regulated surface expression of co-stimulatory molecules and increased release of IL-12p70 in MoLC and co-stimulation with TNF-a and IL-1b further elevated Th1 and Th17 cytokine production. Poly(I:C)-induced up-regulation of type I interferon mRNA levels in MoLC and MoDC was Toll-like receptor 3-dependent but not, or only weakly, modulated by pro-inflammatory cytokines. Our results indicate that inflammatory conditions greatly facilitate recognition of bacteria by MoLC. Furthermore, we suggest a critical involvement of both subsets in innate defence against viruses, whereas inflammatory skin environments additionally favour MoLC as potent inducers of Th1 and Th17 cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.