The use of structural polymeric composites constitutes an interesting option in the area of wind turbine blade manufacturing. Nevertheless, thick composite components may present out-of-plane waviness in their fibers, compromising the service life of the wind blades. In this context, the present study aims to study the influence of out-of-plane waviness in the fibers with different degrees of severity as well as to verify the effect of fiber glass/epoxy resin composites immersion in distilled water and saline solution in their tensile strength (σmax), modulus of elasticity (E), and deformation at break (єrup), analyzing the reinforcement/matrix interface changes. The results showed that the increase in severity promoted, in general, a statistically significant deterioration in σmax of the samples exposed to the same environmental conditioning. The conditioning led to a decrease in E and an increase in єrup, attributed to the deterioration of the interface and the plasticization of the polymeric matrix, respectively, as evidenced by fractographic analysis. The effect of severity on the єrup and σmax properties was only noticed in laminates exposed to environmental conditioning, due to water sorption favoring the deterioration of the matrix/reinforcement interface, intensifying the deleterious effect of out-of-plane waviness of fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.