Polymeric blends based on polycarbonate (PC) and acrylonitrile-styrenebutadiene copolymer (ABS) are applied mainly in the electronic and automotive industries. Studies to improve the properties of PC/ABS blend have led to graphene nanoplates (GNP) addition, a carbon nanofiller derived from graphite that presents some of the promising properties of graphene. In this work, the effect of the addition of GNP (3 and 5 wt%) and maleic anhydride grafted ABS (ABS-g-MAH) were evaluated on the thermal, mechanical, rheological, and electromagnetic properties of PC/ABS blends (85/15), a different blend ratio of previous studies. It was verified that the GNP addition significantly increased the thermal stability of the blends. Furthermore, the mechanical tests showed that ABS-g-MAH acted as an efficient compatibilizer for the PC/ABS blends, and the GNP addition improved the Shore D hardness, the elastic modulus, and the maximum tensile strength of all compositions.Besides, it was observed an overlapping effect of the GNP and ABS-g-MAH addition on the mechanical properties of the blend. The addition of 3 wt% GNP to the PC/ABS (85/15) blend also doubled the elongation at break of the material. Furthermore, these contents resulted in a slight increase of the electromagnetic waves attenuation of 1-2 dB associated to electromagnetic waves reflection.
Glassy carbon (GC) constitutes a promising carbonaceous material that can be employed as an antistatic agent in the development of antistatic packaging used in the electronics industry. Thus, the present work aims at developing biodegradable and antistatic packaging from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) reinforced with different GC contents (0, 0.5, 1.0, 2.5, and 5.0 wt%) and different GC particle size (<45 μm and > 75 μm) using extrusion processing. differential scanning calorimetry analysis shows that the addition of GC decreases the degree of crystallinity (X c) of PHBV, which can explain the reduction of its stiffness. Impedance spectroscopy results reveal that the use of GC contents greater than 2.5 wt% (GC > 75 μm) makes possible the obtainment of a material with an electrical resistivity small enough to be used in antistatic packaging. It can be concluded that GC is an interesting alternative of antistatic agent for electrically dissipative packaging.
The use of high contents of carbon fillers in polymeric composites may decrease the mechanical properties of the polymeric matrices, as well as reduce their processability and increase the production costs of antistatic packaging used in the electronic industry. Therefore, it is of great technological interest the research on alternative approaches to produce polymer composites with low electrical percolation threshold. In this way, this review article focuses on the discussion of the main factors that interfere in the electrical percolation threshold of electrically conductive polymer composites, such as the aspect ratio of the carbon fillers and its particle size, the compatibility between the composite phases, the crystallinity degree of the polymeric matrix, the processing route and the location of fillers in multi-phase polymer blends. Additionally, the review article reports the latest studies related to the obtainment of polymer composites with low percolation threshold contents and produced with different types of carbon fillers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.