Magnetic particle imaging (MPI) is a new medical imaging technique capable of recovering the distribution of superparamagnetic particles from their measured induced signals. In literature there are two main MPI reconstruction techniques: measurement-based (MB) and x-space (XS). The MB method is expensive because it requires a long calibration procedure as well as a reconstruction phase that can be numerically costly. On the other side, the XS method is simpler than MB but the exact knowledge of the field free point (FFP) motion is essential for its implementation. Our simulation work focuses on the implementation of a new approach for MPI reconstruction: it is called hybrid x-space (HXS), representing a combination of the previous methods. Specifically, our approach is based on XS reconstruction because it requires the knowledge of the FFP position and velocity at each time instant. The difference with respect to the original XS formulation is how the FFP velocity is computed: we estimate it from the experimental measurements of the calibration scans, typical of the MB approach. Moreover, a compressive sensing technique is applied in order to reduce the calibration time, setting a fewer number of sampling positions. Simulations highlight that HXS and XS methods give similar results. Furthermore, an appropriate use of compressive sensing is crucial for obtaining a good balance between time reduction and reconstructed image quality. Our proposal is suitable for open geometry configurations of human size devices, where incidental factors could make the currents, the fields and the FFP trajectory irregular.
Articles you may be interested inGeneralized Korteweg-de Vries equation induced from position-dependent effective mass quantum models and mass-deformed soliton solution through inverse scattering transformThe Schrödinger equation with friction from the quantum trajectory perspective Starting from the forward and backward infinitesimal generators of bilateral, timehomogeneous Markov processes, the self-adjoint Hamiltonians of the generalized Schrödinger equations are first introduced by means of suitable Doob transformations. Then, by broadening with the aid of the Dirichlet forms, the results of the Nelson stochastic mechanics, we prove that it is possible to associate bilateral, and timehomogeneous Markov processes to the wave functions stationary solutions of our generalized Schrödinger equations. Particular attention is then paid to the special case of the Lévy-Schrödinger (LS) equations and to their associated Lévy-type Markov processes, and to a few examples of Cauchy background noise. C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.