During the last twenty years DBD plasma actuators have been known by their ability for boundary layer flow control applications. However, their usefulness is not limited to this application field, they also present great utility for applications within the field of heat transfer, such as a way to improve the aerodynamic efficiency of film cooling of gas turbine blades, or de-icing and ice formation prevention. Nevertheless, there is a relative lack of information about DBD's thermal characteristics and its heat generation mechanisms. This happens due to the extremely high electric fields in the plasma region and consequent impossibility of applying intrusive measurement techniques. Against this background, this work describes the physical mechanisms behind the generation of heat associated to the DBD plasma actuators operation. An experimental technique, based on calorimetric principles, was devised in order to quantify the heat energy generated during the plasma actuators operation. The influence of the dielectric thickness, as well as the dielectric material, were also evaluated during this work. The results were exposed and discussed with the purpose of a better understanding of the heat generation mechanisms behind the operation of DBD plasma actuators.
In 1911 the first fundamental patent of Henry Coanda has\ud
been submitted. And 2011 is the centenary of this event for\ud
aeronautic history. This paper presents a general review of\ud
applied research about Coanda effect nozzles, starting from\ud
earlier Coanda works to today's applications. Coanda effect\ud
based nozzles are considered, looking at the nozzles which\ud
can produce an effective angular deflection of a jet and in\ud
particular of a synthetic jet produced by two or more jets
This paper presents the theoretic and numerical background of a recent patent about an innovative Coanda Effect application. This innovative jet is designed to enhance the controllability of the system and to encompass static deflection of the fluid jet but especially the dynamic variation of the Coanda deflection with a very low inertia. This innovative nozzle is formerly named H.O.M.E.R., acronym of “High-speed Orienting Momentum with Enhanced Reversibility”. H.O.M.E.R. constitutes an application based on a dual propeller system. It explains how a vector controllable flux can be produced, with the ability to change angular position dynamically as a function of momentum (or velocity) of the two primitive streams. CFD based simulation in a configuration is provided and main calculations are produced to define the control model. Nozzle design guidelines are provided. The proposed system can be used both for aeronautical naval propulsion and industrial applications
Abstract:The advantages associated to Vertical Short-Take-Off and Landing (V/STOL) have been demonstrated since the early days of aviation, with the initial technolology being based on airships and later on helicopters and planes. Its operational advantages are enormous, being it in the field of military, humanitarian and rescue operations, or even in general aviation. Helicopters have limits in their maximum horizontal speed and classic V/STOL airplanes have problems associated with their large weight, due to the implementation of moving elements, when based on tilting rotors or turbojet vector mechanical oriented nozzles. A new alternative is proposed within the European Union Project ACHEON (Aerial Coanda High Efficiency Orienting-jet Nozzle). The project introduces a novel scheme to orient the jet that is free of moving elements. This is based on a Coanda effect nozzle supported in two fluid streams, also incorporating boundary layer plasma actuators to achieve larger deflection angles. Herein we introduce a state-of-the-art review of the concepts that have been proposed in the framework of jet orienting propulsion systems. This review allows to demonstrate the advantages of the new concept in comparison to competing technologies in use at present day, or of competing technologies under development worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.