Background: Nuclear mitochondrial pseudogenes (numts) are a potential source of contamination during mitochondrial DNA PCR amplification. This possibility warrants careful experimental design and cautious interpretation of heteroplasmic results.
Studies of somatic mitochondrial DNA mutations have become an important aspect of cancer research because these mutations might have functional significance and/or serve as a biosensor for tumor detection. Here we report somatic mitochondrial DNA mutations from three specific tissue types (tumor, adjacent benign, and distant benign) recovered from 24 prostatectomy samples. Needle biopsy tissue from 12 individuals referred for prostate biopsy, yet histologically benign (symptomatic benign), were used as among individual control samples. We also sampled blood (germplasm tissue) from each patient to serve as within individual controls relative to the somatic tissues sampled (malignant, adjacent, and distant benign). Complete mitochondrial genome sequencing was attempted on each sample. In contrast to both control groups [within patient (blood) and among patient (symptomatic benign)], all of the tissue types recovered from the malignant group harbored significantly different mitochondrial DNA (mtDNA) mutations. We conclude that mitochondrial genome mutations are an early indicator of malignant transformation in prostate tissue. These mutations occur well before changes in tissue histo-pathology, indicative of prostate cancer, are evident to the pathologist.
We report the usefulness of a 3.4-kb mitochondrial genome deletion (3.4 mtdelta) for molecular definition of benign, malignant, and proximal to malignant (PTM) prostate needle biopsy specimens. The 3.4 mtdelta was identified through long-extension polymerase chain reaction (PCR) analysis of frozen prostate cancer samples. A quantitative PCR assay was developed to measure the levels of the 3.4 mtdelta in clinical samples. For normalization, amplifications of a nuclear target and total mitochondrial DNA were included. Cycle threshold data from these targets were used to calculate a score for each biopsy sample. In a pilot study of 38 benign, 29 malignant, and 41 PTM biopsy specimens, the difference between benign and malignant core biopsy specimens was well differentiated (P & .0001), with PTM indistinguishable from malignant samples (P = .833). Results of a larger study were identical. In comparison with histopathologic examination for benign and malignant samples, the sensitivity and specificity were 80% and 71%, respectively, and the area under a receiver operating characteristic (ROC) curve was 0.83 for the deletion. In a blinded external validation study, the sensitivity and specificity were 83% and 79%, and the area under the ROC curve was 0.87. The 3.4 mtdelta may be useful in defining malignant, benign, and PTM prostate tissues.
Biofuels obtained from biomass have the potential to replace a substantial fraction of petroleum-based hydrocarbons that contribute to carbon emissions and are limited in supply. With the ultimate goal to maximize biomass yield for biofuel production, this review aims to evaluate prospects of different hybrid breeding schemes to optimally exploit heterosis for biomass yield in perennial ryegrass (Lolium perenne L.) and switchgrass (Panicum virgatum), two perennial model grass species for bioenergy production. Starting with a careful evaluation of current population and synthetic breeding methods, we address crucial topics to implement hybrid breeding, such as the availability and development of heterotic groups, as well as biological mechanisms for hybridization control such as self-incompatibility (SI) and male sterility (MS). Finally, we present potential hybrid breeding schemes based on SI and MS for the two bioenergy grass species, and discuss how molecular tools and synteny can be used to transfer relevant information for genes controlling these biological mechanisms across grass species.
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT There is a rising interest of moving towards hybrid breeding in outcrossing species. Self-compatibility (SC), which occurs at low rates in self-incompatible species, could be used to develop inbred lines, a key requirement for hybrid breeding programs. In perennial ryegrass, the existence of SC independent from the self-incompatibility (SI) loci S and Z has been reported. In this study, we used 98 F2 individuals from a cross between a self-compatible ecotype and an individual of the VrnA mapping population that were tested with markers for two candidate linkage groups 3 and 5 as well as markers for candidate regions at the S and Z locus. We were able to determine a tentative location of a SC locus and tested the possible interaction to other loci involved in SI and SC. This information will help to fine map the SC locus, and for marker-assisted selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.