Comparisons of musicians and non-musicians have revealed enhanced cognitive and sensory processing in musicians, with longitudinal studies suggesting these enhancements may be due in part to experience-based plasticity. Here, we investigate the impact of primary instrument on the musician signature of expertise by assessing three groups of young adults: percussionists, vocalists, and non-musician controls. We hypothesize that primary instrument engenders selective enhancements reflecting the most salient acoustic features to that instrument, whereas cognitive functions are enhanced regardless of instrument. Consistent with our hypotheses, percussionists show more precise encoding of the fast-changing acoustic features of speech than non-musicians, whereas vocalists have better frequency discrimination and show stronger encoding of speech harmonics than non-musicians. There were no strong advantages to specialization in sight-reading vs. improvisation. These effects represent subtle nuances to the signature since the musician groups do not differ from each other in these measures. Interestingly, percussionists outperform both non-musicians and vocalists in inhibitory control. Follow-up analyses reveal that within the vocalists and non-musicians, better proficiency on an instrument other than voice is correlated with better inhibitory control. Taken together, these outcomes suggest the more widespread engagement of motor systems during instrumental practice may be an important factor for enhancements in inhibitory control, consistent with evidence for overlapping neural circuitry involved in both motor and cognitive control. These findings contribute to the ongoing refinement of the musician signature of expertise and may help to inform the use of music in training and intervention to strengthen cognitive function.
Speech rhythms guide perception, especially in noise. We recently revealed that percussionists outperform non-musicians in speech-in-noise perception, with better speech-in-noise perception associated with better rhythm discrimination across a range of rhythmic expertise. Here, we consider rhythm production skills, specifically drumming to a beat (metronome or music) and to sequences (metrical or jittered patterns), as well as speech-in-noise perception in adult percussionists and non-musicians. Given the absence of a regular beat in speech, we hypothesise that processing of sequences is more important for speech-in-noise perception than the ability to entrain to a regular beat. Consistent with our hypotheses, we find that the sequence-based drumming measures predict speech-in-noise perception, above and beyond hearing thresholds and IQ, whereas the beat-based measures do not. Outcomes suggest temporal patterns may help disambiguate speech under degraded listening conditions, extending theoretical considerations about speech rhythm to the everyday challenge of listening in noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.