The advent of global climate change has major impacts upon viticultural production. Changes in the spatial limits of wine production are already being observed around the globe; vineyards are now viable at higher elevations and more polar latitudes. Climatic conditions are also threatening production in existing appellations. Therefore, sound management strategies are vital to maintain high-quality wines and varietal typicity, and to respond to changing market conditions. In mountainous regions such as the European Alps, new production areas at higher elevations are increasingly considered to be a promising solution. However, the suitability of viticulture in general, and even specific varieties of wine grapes, can change drastically across short distances in complex mountain terrain. Variations in temperature and radiation accumulation directly influence plant suitability, yield quantity, and quality. This paper shares initial findings from the REBECKA Project, a transnational research initiative designed to assess the impacts of climate change on mountain viticulture and wine quality in South Tyrol (Italy) and Carinthia (Austria). A three-part approach is utilized to better assess these dynamics: (1) historical crop yield data from local vineyards are assessed, (2) plant phenology stages and polyphenolic compounds of the Pinot Noir variety are analyzed along an elevation gradient and related to bioclimatic indices, and (3) a suitability map is developed that considers small-scale topographic and agro-environmental conditions. Taken together, these components contribute in clarifying many of the opportunities and threats facing high altitude viticulture in a changing world and provide new insights for sound decision-making in alpine vineyards.
Clouds cover substantial parts of the Earth’s surface and they are one of the most essential components of the global climate system impacting the Earth’s radiation balance as well as the water cycle redistributing water around the globe as precipitation. Therefore, continuous observation of clouds is of primary interest in climate and hydrological studies. This work documents the first efforts in Italy in remote sensing clouds and precipitation using a combination of K- and W-band (24 and 94 GHz, respectively) radar profilers. Such a dual-frequency radar configuration has not been widely used yet, but it could catch on in the near future given its lower initial cost and ease of deployment for commercially available systems at 24 GHz, with respect to more established configurations. A field campaign running at the Casale Calore observatory at the University of L’Aquila, Italy, nestled in the Apennine mountain range is described. The campaign features are preceded by a review of the literature and the underpinning theoretical background that might help newcomers, especially in the Italian community, to approach cloud and precipitation remote sensing. This activity takes place in interesting time for radar sensing clouds and precipitation, stimulated both by the launch of the ESA/JAXA EarthCARE satellite missions scheduled in 2024, which will have on-board, among other instruments, a W-band Doppler cloud radar and the proposal of new missions using cloud radars currently undergoing their feasibility studies (e.g., WIVERN and AOS in Europe and Canada, and U.S., respectively)
Climate indices based on heat accumulation, e.g. the Winkler index, are widely used to define the climatic niches for vines. In this study, we investigate how a combined use of high-resolution (25 m) climate index maps and phenology records from 30 vineyards in South Tyrol (in the Italian Alps) can help to (i) assess viticultural suitability across a mountainous landscape and (ii) estimate the timing of physiological processes of Pinot Noir development (ripening and must weight) at various sites across the region. First, the best interpolation method is chosen (from multiple linear regression (MLR), regression kriging or support vector regression) to create maps of climate indices averaged over the time period 1991-2010. Second, correlation is calculated between the timing of phenological stages of Pinot Noir for the year 2017 and various climate indicators, such as temperature-based indices (Winkler, Huglin, Biologically Active Degree Days, Cool Night, Fregoni) and average (GST), minimum and maximum temperature over the growing season. The MLR method is shown to yield the best interpolations of the climate indices across the complex terrain of the study area. The Winkler and GST indices correlate most precisely with the late-season phenological events of the study sites, and are thus the most predictive. These findings demonstrate the potential of climatic maps to effectively define suitable areas for grape growing and estimate ripening dates in South Tyrol.
<p>Atmospheric stability is a measure of atmospheric status which determines whether thermodynamically perturbed air will rise, sink, or be neutral. Atmospheric stability has a major impact on the evolution of wind turbine wakes and thus on the yield and performance of offshore wind parks. For estimations of wind park power output and for improving analyses of offshore wind park wakes, a crucial parameter was found to be profiles of atmospheric temperature and stability metrics. Atmospheric temperature profiles can be measured in-situ by balloon-borne sensors, but also estimated from the ground using radiometric observations. This presentation reviews the stability metrics useful for monitoring wind park performances and provides a quantitative assessment of the value of microwave radiometer (MWR) observations to estimate these stability metrics from near surface, either over land or ocean. Results from three different MWR instruments, representing the most common available on the market, and at least three field experiments will be presented.</p><p>&#160;</p><p>This work has been funded by Carbon Trust and the partner companies of the Off-shore Wind Accelerator program: (in alphabetical order) EnBW, Equinor, Orsted, RWE, Scottish Power Renewables, Shell, SSE Renewables, Total Energies, Vattenfall.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.