Ligand field density functional theory (LFDFT) is a methodology consisting of non-standard handling of DFT calculations and post-computation analysis, emulating the ligand field parameters in a non-empirical way. Recently, the procedure was extended for two-open-shell systems, with relevance for inter-shell transitions in lanthanides, of utmost importance in understanding the optical and magnetic properties of rare-earth materials. Here, we expand the model to the calculation of intensities of f → d transitions, enabling the simulation of spectral profiles. We focus on Eu(2+)-based systems: this lanthanide ion undergoes many dipole-allowed transitions from the initial 4f(7)((8)S7/2) state to the final 4f(6)5d(1) ones, considering the free ion and doped materials. The relativistic calculations showed a good agreement with experimental data for a gaseous Eu(2+) ion, producing reliable Slater-Condon and spin-orbit coupling parameters. The Eu(2+) ion-doped fluorite-type lattices, CaF2:Eu(2+) and SrCl2:Eu(2+), in sites with octahedral symmetry, are studied in detail. The related Slater-Condon and spin-orbit coupling parameters from the doped materials are compared to those for the free ion, revealing small changes for the 4f shell side and relatively important shifts for those associated with the 5d shell. The ligand field scheme, in Wybourne parameterization, shows a good agreement with the phenomenological interpretation of the experiment. The non-empirical computed parameters are used to calculate the energy and intensity of the 4f(7)-4f(6)5d(1) transitions, rendering a realistic convoluted spectrum.
The development of efficient sources of single photons and entangled photon pairs emitting in the low-loss wavelength region around 1550 nm is crucial for long-distance quantum communication. Moreover, direct fiber coupling and electrical carrier injection are highly desirable for deployment in compact and user-friendly systems integrated with the existing fiber infrastructure. Here we present a detailed design study of circular Bragg gratings fabricated in InP slabs and operating in the telecom C-band. These devices enable the simultaneous enhancement of the X and XX spectral lines, with collection efficiency in numerical aperture 0.65 close to 90% for the wavelength range 1520 - 1580 nm and Purcell factor up to 15. We also investigate the coupling into a single mode fiber, which exceeds 70% in UHNA4. Finally, we propose a modified device design directly compatible with electrical carrier injection, reporting Purcell factors up to 20 and collection efficiency in numerical aperture 0.65 close to 70% for the whole telecom C-band.
Semiconductor quantum dots embedded in hybrid circular Bragg gratings are a promising platform for the efficient generation of nonclassical light. The scalable fabrication of multiple devices with similar performance is highly desirable for their practical use as sources of single and entangled photons, while the ability to operate at telecom wavelength is essential for their integration with the existing fiber infrastructure. In this work, we combine the promising properties of broadband hybrid circular Bragg gratings with a membrane-transfer process performed on 3 in. wafer scale. We develop and characterize single-photon sources based on InAs/GaAs quantum dots emitting in the telecom O-band, demonstrating bright single-photon emission with Purcell factor >5 and count rates up to 10 MHz. Furthermore, we address the question of reproducibility by benchmarking the performance of 10 devices covering a wide spectral range of 50 nm within the O-band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.