An important threat to reliable storage of data is silent data corruption. In order to develop suitable protection mechanisms against data corruption, it is essential to understand its characteristics. In this paper, we present the first large-scale study of data corruption. We analyze corruption instances recorded in production storage systems containing a total of 1.53 million disk drives, over a period of 41 months. We study three classes of corruption: checksum mismatches, identity discrepancies, and parity inconsistencies. We focus on checksum mismatches since they occur the most.We find more than 400,000 instances of checksum mismatches over the 41-month period. We find many interesting trends among these instances including: (i) nearline disks (and their adapters) develop checksum mismatches an order of magnitude more often than enterprise class disk drives, (ii) checksum mismatches within the same disk are not independent events and they show high spatial and temporal locality, and (iii) checksum mismatches across different disks in the same storage system are not independent. We use our observations to derive lessons for corruption-proof system design.
Commodity file systems trust disks to either work or fail completely, yet modern disks exhibit more complex failure modes. We suggest a new fail-partial failure model for disks, which incorporates realistic localized faults such as latent sector errors and block corruption. We then develop and apply a novel failure-policy fingerprinting framework, to investigate how commodity file systems react to a range of more realistic disk failures. We classify their failure policies in a new taxonomy that measures their Internal RObustNess (IRON), which includes both failure detection and recovery techniques. We show that commodity file system failure policies are often inconsistent, sometimes buggy, and generally inadequate in their ability to recover from partial disk failures. Finally, we design, implement, and evaluate a prototype IRON file system, Linux ixt3, showing that techniques such as in-disk checksumming, replication, and parity greatly enhance file system robustness while incurring minimal time and space overheads.
We introduce optimistic crash consistency, a new approach to crash consistency in journaling file systems. Using an array of novel techniques, we demonstrate how to build an optimistic commit protocol that correctly recovers from crashes and delivers high performance. We implement this optimistic approach within a Linux ext4 variant which we call OptFS. We introduce two new file-system primitives, osync() and dsync(), that decouple ordering of writes from their durability. We show through experiments that OptFS improves performance for many workloads, sometimes by an order of magnitude; we confirm its correctness through a series of robustness tests, showing it recovers to a consistent state after crashes. Finally, we show that osync() and dsync() are useful in atomic file system and database update scenarios, both improving performance and meeting application-level consistency demands.
We conduct a comprehensive study of file-system code evolution. By analyzing eight years of Linux file-system changes across 5079 patches, we derive numerous new (and sometimes surprising) insights into the file-system development process; our results should be useful for both the development of file systems themselves as well as the improvement of bug-finding tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.