The ability to assemble weakly interacting subsystems is a prerequisite for implementing quantum information processing and generating controlled entanglement. In recent years, molecular nanomagnets have been proposed as suitable candidates for qubit encoding and manipulation. In particular, antiferromagnetic Cr7Ni rings behave as effective spin-1/2 systems at low temperature and show long decoherence times. Here, we show that these rings can be chemically linked to each other and that the coupling between their spins can be tuned by choosing the linker. We also present calculations that demonstrate how realistic microwave pulse sequences could be used to generate maximally entangled states in such molecules.
The possibility to graft nano-objects directly on its surface makes graphene particularly appealing for device and sensing applications. Here we report the design and the realization of a novel device made by a graphene nanoconstriction decorated with TbPc(2) magnetic molecules (Pc = phthalocyananine), to electrically detect the magnetization reversal of the molecules in proximity with graphene. A magnetoconductivity signal as high as 20% is found for the spin reversal, revealing the uniaxial magnetic anisotropy of the TbPc(2) quantum magnets. These results depict the behavior of multiple-field-effect nanotransistors with sensitivity at the single-molecule level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.