Due to the wide diffusion of JPEG coding standard, the image forensic community has devoted significant attention to the development of double JPEG (DJPEG) compression detectors through the years. The ability of detecting whether an image has been compressed twice provides paramount information toward image authenticity assessment. Given the trend recently gained by convolutional neural networks (CNN) in many computer vision tasks, in this paper we propose to use CNNs for aligned and non-aligned double JPEG compression detection. In particular, we explore the capability of CNNs to capture DJPEG artifacts directly from images. Results show that the proposed CNN-based detectors achieve good performance even with small size images (i.e., 64 Ã\u97 64), outperforming state-of-the-art solutions, especially in the non-aligned case. Besides, good results are also achieved in the commonly-recognized challenging case in which the first quality factor is larger than the second one
Detection of contrast adjustments in the presence of JPEG post processing is known to be a challenging task. JPEG post processing is often applied innocently, as JPEG is the most common image format, or it may correspond to a laundering attack, when it is purposely applied to erase the traces of manipulation. In this paper, we propose a CNN-based detector for generic contrast adjustment, which is robust to JPEG compression. The proposed system relies on a patch-based Convolutional Neural Network (CNN), trained to distinguish pristine images from contrast adjusted images, for some selected adjustment operators of different nature. Robustness to JPEG compression is achieved by training the CNN with JPEG examples, compressed over a range of Quality Factors (QFs). Experimental results show that the detector works very well and scales well with respect to the adjustment type, yielding very good performance under a large variety of unseen tonal adjustments.
Copy-move forgeries are very common image manipulations that are often carried out with malicious intents. Among the techniques devised by the 'Image Forensic' community, those relying on scale invariant feature transform (SIFT) features are the most effective ones. In this paper, we approach the copy-move scenario from the perspective of an attacker whose goal is to remove such features. The attacks conceived so far against SIFT-based forensic techniques implicitly assume that all SIFT keypoints have similar properties. On the contrary, we base our attacking strategy on the observation that it is possible to classify them in different typologies. Also, one may devise attacks tailored to each specific SIFT class, thus improving the performance in terms of removal rate and visual quality. To validate our ideas, we propose to use a SIFT classification scheme based on the gray scale histogram of the neighborhood of SIFT keypoints. Once the classification is performed, we then attack the different classes by means of class-specific methods. Our experiments lead to three interesting results: (1) there is a significant advantage in using SIFT classification, (2) the classification-based attack is robust against different SIFT implementations, and (3) we are able to impair a state-of-the-art SIFT-based copy-move detector in realistic cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.