Gaining a molecular understanding of material extrusion (MatEx) 3D printing is crucial to predicting and controlling part properties. Here we report the direct observation of distinct birefringence localised to the weld regions between the printed filaments, indicating the presence of molecular orientation that is absent from the bulk of the filament. The value of birefringence at the weld increases at higher prints speeds and lower nozzle temperatures, and is found to be detrimental to the weld strength measured by tensile testing perpendicular to the print direction. We employ a molecularly-aware non-isothermal model of the MatEx flow and cooling process to predict the degree of alignment trapped in the weld at the glass transition. We find that the predicted residual alignment factor,Ā, is linearly related to the extent of birefringence, ∆n. Thus, by combining experiments and molecular modelling, we show that weld strength is not limited by inter-diffusion, as commonly expected, but instead by the configuration of the entangled polymer network. We adapt the classic molecular interpretation of glassy polymer fracture to explain how the measured weld strength decreases with increasing print speed and decreasing nozzle temperature.
International newspapers and experts have called 3D printing the industrial revolution of this century. Among all its available variants, the fused deposition modeling (FDM) technique is of greater interest since its application is possible using simple desktop printers. FDM is a complex process, characterized by a large number of parameters that influence the quality and final properties of the product. In particular, in the case of semicrystalline polymers, which afford better mechanical properties than amorphous ones, it is necessary to understand the crystallization kinetics as the processing conditions vary, in order to be able to develop models that allow having a better control over the process and consequently on the final properties of the material. In this work it was proposed to study the crystallization kinetics of two different polyamides used for FDM 3D printing and to link it to the microstructure and properties obtained during FDM. The kinetics are studied both in isothermal and fast cooling conditions, thanks to a home-built device which allows mimicking the quenching experienced during filament deposition. The temperature history of a single filament is then determined by mean of a micro-thermocouple and the final crystallinity of the sample printed in a variety of conditions is assessed by differential scanning calorimetry. It is found that the applied processing conditions always allowed for the achievement of the maximum crystallinity, although in one condition the polyamide mesomorphic phase possibly develops. Despite the degree of crystallinity is not a strong function of printing variables, the weld strength of adjacent layers shows remarkable variations. In particular, a decrease of its value with printing speed is observed, linked to the probable development of molecular anisotropy under the more extreme printing conditions.
There has been extensive research in the field of material-extrusion (Mat-Ex) 3D printing to improve the inter-layer bonding process. Much research focusses on how various printing conditions may be detrimental to weld strength; many different feedstocks have been investigated along with various additives to improve strength. Surprisingly, there has been little attention directed toward how fundamental molecular properties of the feedstock, in particular the average molar mass of the polymer, may contribute to microstructure of the weld. Here we showed that weld strength increases with decreasing average molar mass, contrary to common observations in specimens processed in more traditional ways, e.g., by compression molding. Using a combination of synchrotron infra-red polarisation modulation microspectroscopy measurements and continuum modelling, we demonstrated how residual molecular anisotropy in the weld region leads to poor strength and how it can be eradicated by decreasing the relaxation time of the polymer. This is achieved more effectively by reducing the molar mass than by the usual approach of attempting to govern the temperature in this hard to control non-isothermal process. Thus, we propose that molar mass of the polymer feedstock should be considered as a key control parameter for achieving high weld strength in Mat-Ex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.