Estimates of absolute pest population density are critical to pest management programs but have been difficult to obtain from capture numbers in pheromone-baited monitoring traps. In this paper, we establish a novel predictive relationship for a probability (spTfer(r)) of catching a male located at a distance r from the trap with a plume reach D.
Several integrated pest management programs rely on the use of mating disruption tactics to control insect pests. Some programs specifically target non‐native species, such as the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). We evaluated SPLAT® GM, a new sprayable formulation of the gypsy moth sex pheromone disparlure, for its ability to disrupt gypsy moth mating. The study was conducted in 2006, 2007, and 2008 in forested areas in Virginia, USA. Mating success of gypsy moth females was reduced by >99% and male moth catches in pheromone‐baited traps by >90%, in plots treated with SPLAT® GM at dosages ranging from 15 to 75 g of active ingredient (a.i.) ha−1. Dosage‐response tests conducted in 2008 indicated that SPLAT® GM applied at a dosage of 7.5 g a.i. ha−1 was as effective as a 15 g a.i. ha−1 dosage.
Mating disruption tactics involve the deployment of pheromones to interfere with mate finding behaviors in insect populations. This management strategy is the dominant one used against expanding gypsy moth populations in the United States, and historically it has been assumed to be most effective against low-density populations. Operationally, mating disruption is used in areas where the season-long trap catch is <30 males/trap, however the maximum population density at which mating disruption is effective remains unknown. We analysed historical gypsy moth mating disruption treatment data from 2000 to 2010, and used this information to guide the mating disruption field studies conducted from 2012 to 2015 against artificially-created populations of various densities, from 0 to 116 males/trap/day. We observed that mating disruption tactics at a dose of 15 g AI/ha were effective against gypsy moth populations with a season-long trap catch of at least 115 males/trap. This research highlights the utility of mating disruption in higher gypsy moth densities than what is currently recommended in management programs.
Mating disruption techniques are used in pest control for many species of insects, yet little is known regarding the environmental persistence of these pheromones following their application and if persistence is affected by climatic conditions. We first studied the persistent effect of ground applications of Luretape® GM in Lymantria dispar (L) mating disruption in VA, USA in 2006. The removal of Luretape® GM indicated that the strong persistent effect of disparlure in the environment reported by previous studies is produced by residual pheromone in the dispensers as opposed to environmental contamination. In 2010 and 2011, we evaluated the efficacy of two formulations, Disrupt® II and SPLAT GMTM, in VA and WI, USA, which presented different climatic conditions. In plots treated in WI and VA, male moth catches in pheromone-baited traps were reduced in the year of treatment and one year after the pheromone applications relative to untreated controls. However, similar first- and second-year effects of pheromone treatments in VA and WI suggest that the release rate over one and two years was the same across markedly different climates. Future applications that use liquid or biodegradable formulations of synthetic pheromones could reduce the amount of persistence in the environment.
1 Mating disruption is the primary tactic used to reduce rates of gypsy moth population spread in the United States Department of Agriculture's Slow-the-Spread of the gypsy moth programme (STS). Because STS targets very low-density gypsy moth populations within which it is extremely difficult to collect females or egg masses, mating success in native populations cannot be determined. Therefore, the evaluation of mating disruption treatments in field experiments such as those designed to test new formulations and application methods requires deploying and recovering laboratory-reared female moths to determine mating success. 2 Five methods of deploying females were evaluated for cost, rates of female and egg mass recovery, and female mating success. The deployment methods tested were: modified delta trap, square barrier, single and double trunk bands, and tethered females. 3 Deployment of tethered females had the highest cost and mating success rate, but it did not yield the highest rates of female and egg mass recovery. Deployment of females in delta traps produced the lowest cost and mating success rate, but yielded the highest recovery rate. Neither of these deployment methods is recommended because of unacceptably high cost (tethered female) or low mating success (delta trap). 4 There were no significant differences in cost or mating success among the other three deployment methods. 5 The differences among the square barrier, single trunk band, and double trunk band methods in cost, female and egg mass recovery, and mating success are too small to recommend any one over the others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.