Changes in gene expression contribute to pathophysiological alterations following spinal cord injury (SCI). We examined gene expression over time (4 h, 24 h, 7 days) at the impact site, as well as rostral and caudal regions, following mild, moderate, or severe contusion SCI in rats. High-density oligonucleotide microarrays were used that included approximately 27,000 genes/ESTs (Affymetrix RG-U34; A, B and C arrays), together with multiple analyses (MAS 5.0, dChip). Alterations after mild injury were relatively rapid (4 and 24 h), whereas they were delayed and prolonged after severe injury (24 h and 7 days). The number and magnitude of gene expression changes were greatest at the injury site after moderate injury and increased in rostral and caudal regions as a function of injury severity. Sham surgery resulted in expression changes that were similar to mild injury, suggesting the importance of using time-linked surgical controls as well as naive animals for these kinds of studies. Expression of many genes and ESTs was altered; these were classified functionally based on ontology. Overall representation of these functional classes varied with distance from the site of injury and injury severity, as did the individual genes that contributed to each functional class. Different clustering approaches were used to identify changes in neuronal-specific genes and several transcription factors that have not previously been associated with SCI. This study represents the most comprehensive evaluation of gene expression changes after SCI to date. The results underscore the power of microarray approaches to reveal global genomic responses as well as changes in particular gene clusters and/or families that may be important in the secondary injury cascade.
The dual role of microglia in cytotoxicity and neuroprotection is believed to depend on the specific, temporal expression of microglial-related genes. To better clarify this issue, we used high-density oligonucleotide microarrays to examine microglial gene expression after spinal cord injury (SCI) in rats. We compared expression changes at the lesion site, as well as in rostral and caudal regions after mild, moderate, or severe SCI. Using microglial-associated anchor genes, we identified two clusters with different temporal profiles. The first, induced by 4 h postinjury to peak between 4 and 24 h, included interleukin-1beta, interleukin-6, osteopontin, and calgranulin, among others. The second was induced 24 h after SCI, and peaked between 72 h and 7 days; it included C1qB, Galectin-3, and p22(phox). These two clusters showed similar expression profiles regardless of injury severity, albeit with slight decreases in expression in mild or severe injury vs. moderate injury. Expression was also decreased rostral and caudal to the lesion site. We validated the expression of selected cluster members at the mRNA and protein levels. In addition, we demonstrated that stimulation of purified microglia in culture induces expression of C1qB, Galectin-3, and p22(phox). Finally, inhibition of p22(phox) activity within microglial cultures significantly suppressed proliferation in response to stimulation, confirming that this gene is involved in microglial activation. Because microglial-related factors have been implicated both in secondary injury and recovery, identification of temporally distinct clusters of genes related to microglial activation may suggest distinct roles for these groups of factors.
Following spinal cord injury, there are numerous changes in gene expression that appear to contribute to either neurodegeneration or reparative processes. We utilized high density oligonucleotide microarrays to examine temporal gene profile changes after spinal cord injury in rats with the goal of identifying novel factors involved in neural plasticity. By comparing mRNA changes that were coordinately regulated over time with genes previously implicated in nerve regeneration or plasticity, we found a gene cluster whose members are involved in cell adhesion processes, synaptic plasticity, and/or cytoskeleton remodeling. This group, which included the small GTPase Rab13 and actin-binding protein Coronin 1b, showed significantly increased mRNA expression from 7-28 days after trauma. Overexpression in vitro using PC-12, neuroblastoma, and DRG neurons demonstrated that these genes enhance neurite outgrowth. Moreover, RNAi gene silencing for Coronin 1b or Rab13 in NGF-treated PC-12 cells markedly reduced neurite outgrowth. Coronin 1b and Rab13 proteins were expressed in cultured DRG neurons at the cortical cytoskeleton, and at growth cones along with the pro-plasticity/regeneration protein GAP-43. Finally, Coronin 1b and Rab13 were induced in the injured spinal cord, where they were also co-expressed with GAP-43 in neurons and axons. Modulation of these proteins may provide novel targets for facilitating restorative processes after spinal cord injury.Traumatic injury to the spinal cord induces delayed biochemical responses that affect both cell loss and subsequent repair. Modulation of reparative processes includes factors involved in either facilitating or inhibiting neurite outgrowth, which are often regulated at the gene and protein levels after injury. Collectively, these factors likely determine in part the degree of anatomical and functional recovery after injury.Regeneration-associated proteins (RAGs) appear to play a role in plasticity and regeneration following SCI. 1 These include transcription factors (c-Jun), cytoskeletal components (T␣1), microtubule-associated proteins, growth-associated proteins (GAP-43, CAP-23), cell adhesion molecules (N-CAM, L1, TAG1), neurotrophic factors, cytokines, and extracellular matrix components (SNAP25, munc13, and cpg15/neuritin) (1-10). In some cases, these factors share common molecular pathways. GAP-43 and CAP-23 bind downstream to the cofactor PI(4,5)P(2), at plasmalemmal rafts, contributing to the regulation of actin and modulating neurite outgrowth in neuronallike cell lines (11,12). In other instances, a common downstream effector, such as neurotrophin-dependent intracellular cAMP, may serve to facilitate axonal regeneration by overcoming inhibition from factors such as myelin-associated glycoprotein (MAG) (13)(14)(15).Microarray technology provides a powerful tool for identifying molecular pathways involved in either endogenous neurotoxicity or regeneration/plasticity after SCI (16 -19). It allows concurrent analysis of thousands of genes and the identification of c...
Functional recovery after spinal cord injury (SCI) may result in part from axon outgrowth and related plasticity through coordinated changes at the molecular level. We employed microarray analysis to identify a subset of genes the expression patterns of which were temporally coregulated and correlated to functional recovery after SCI. Steady-state mRNA levels of this synchronously regulated gene cluster were depressed in both ventral and dorsal horn neurons within 24 h after injury, followed by strong re-induction during the following 2 wk, which paralleled functional recovery. The identified cluster includes neuritin, attractin, microtubule-associated protein 1a, and myelin oligodendrocyte protein genes. Transcriptional and protein regulation of this novel gene cluster was also evaluated in spinal cord tissue and in single neurons and was shown to play a role in axonal plasticity. Finally, in vitro transfection experiments in primary dorsal root ganglion cells showed that cluster members act synergistically to drive neurite outgrowth.
A 5'-tau susceptibility haplotype may be a sensitive marker for sporadic PSP and a genetic defect in, or closely linked to, tau may contribute to the cause of PSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.