BackgroundRabies is a fatal zoonotic neglected disease that occurs in more than 150 countries, and kills more than 55.000 people every year. It is caused by an enveloped single stranded RNA virus that affects the central nervous system, through an infection initiated by the muscular nicotinic acetylcholine receptor, according to many authors. Alkaloids, such as acetylcholine, are widespread molecules in nature. They are present in numerous biological fluids, including the skin secretion of many amphibians, in which they act (together with proteins, peptides and steroids) as protection agents against predators and/or microorganisms. Among those amphibians that are rich in alkaloids, there is the genus Rhinella.MethodsBufotenine was isolated from Rhinela jimi skin secretion after a liquid-liquid partition (H2O:CH2Cl2) and reversed phase high-performance liquid chromatography analyses (RP-HPLC). Bufotenine was also extracted from seeds of Anadenanthera colubrina in acetone solution and purified by RP-HPLC, as well. Structural characterization was performed by mass spectrometry and nuclear magnetic resonance analyses. Cytotoxic tests of bufotenine were performed over baby hamster kidney (BHK-21) cells using MTT test. For the antiviral activity, Rabies virus strain Pasteur vaccine (PV) was used on fluorescence inhibition test and fluorescent foci inhibition test, with both simultaneous and time course treatment of the cells with the virus and bufotenine.ResultsIn the present work we describe the effects of bufotenine, obtained either from toads or plants, that can inhibit the penetration of rabies virus in mammalian cells through an apparent competitive mechanism by the nicotinic acetylcholine receptor. Moreover, this inhibition was dose- and time-dependent, pointing out to a specific mechanism of action.ConclusionsThis work do not present or propose bufotenine as a drug for the treatment of rabies due to the hallucinogen and psychotropic effects of the molecule. However, continued studies in the elucidation of the antiviral mechanism of this molecule, may lead to the choice or development of a tryptamine analogue presenting potential clinical use.Electronic supplementary materialThe online version of this article (doi:10.1186/1678-9199-20-45) contains supplementary material, which is available to authorized users.
Serology after the third dose can be considered unnecessary in unexposed patients, since 97% and 100% of volunteers respectively vaccinated by the intradermal and intramuscular route presented satisfactory antibody levels (> 0.5% IU/mL).
SUMMARYDespite the absence of current official reports showing the number of cattle infected by rabies, it is estimated that nearly 30,000 bovines are lost each year in Brazil. In order to minimize the important economic losses, control of the disease is achieved by eliminating bat colonies and by herd vaccination. In this study, we compare the antibody response in cattle elicited by vaccination with an attenuated ERA vaccine (AEvac) and an inactivated-adjuvanted PV (IPVvac) vaccine. The antibody titers were appraised by cell-culture neutralization test and ELISA, and the percentage of seropositivity was ascertained for a period of 180 days. IPVvac elicited complete seropositivity rates from day 30 to day 150, and even on day 180, 87% of the sera showed virus-neutralizing antibody titers (VNA) higher than 0.5IU/ml. There were no significant differences between the VNA titers and seropositivity rates obtained with IPVvac in the two methods tested. AEvac, however, elicited significantly lower titers than those observed in the group receiving inactivated vaccine. In addition, the profiles of antirabies IgG antibodies, evaluated by ELISA, and VNA, appraised by cellculture neutralization test, were slightly different, when both vaccines were compared.
BackgroundRabies is an incurable neglected zoonosis with worldwide distribution characterized as a lethal progressive acute encephalitis caused by a lyssavirus. Animal venoms and secretions have long been studied as new bioactive molecular sources, presenting a wide spectrum of biological effects, including new antiviral agents. Bufotenine, for instance, is an alkaloid isolated from the skin secretion of the anuran Rhinella jimi that inhibits cellular penetration by the rabies virus. Antimicrobial peptides, such as ocellatin-P1 and ocellatin-F1, are present in the skin secretion of anurans from the genus Leptodactylus and provide chemical defense against predators and microorganisms.MethodsSkin secretion from captive Leptodactylus labyrinthicus was collected by mechanical stimulation, analyzed by liquid chromatography and mass spectrometry, and assayed for antiviral and cytotoxic activities. Synthetic peptides were obtained using solid phase peptide synthesis, purified by liquid chromatography and structurally characterized by mass spectrometry, and assayed in the same models. Cytotoxicity assays based on changes in cellular morphology were performed using baby hamster kidney (BHK-21) cells. Fixed Rabies virus (Pasteur Virus – PV) strain was used for virological assays based on rapid fluorescent focus inhibition test.ResultsHerein, we describe a synergic effect between ocellatin-F1 and bufotenine. This synergism was observed when screening the L. labyrinthicus skin secretion for antiviral activities. The active fraction major component was the antimicrobial peptide ocellatin-F1. Nevertheless, when the pure synthetic peptide was assayed, little antiviral activity was detectable. In-depth analyses of the active fraction revealed the presence of residual alkaloids together with ocellatin-F1. By adding sub-effective doses (e.g. < IC50) of pure bufotenine to synthetic ocellatin-F1, the antiviral effect was regained. Moreover, a tetrapetide derived from ocellatin-F1, based on alignment with the virus’s glycoprotein region inferred as a possible cell ligand, was able to maintain the synergic antiviral activity displayed by the full peptide.ConclusionsThis novel antiviral synergic effect between a peptide and an alkaloid may present an innovative lead for the study of new antiviral drugs.Electronic supplementary materialThe online version of this article (doi:10.1186/s40409-015-0048-1) contains supplementary material, which is available to authorized users.
The laboratory tests recommended by the World Health Organization for detection of rabies virus and evaluation of specific antibodies are performed with fluorescent antibodies against the virus, the ribonucleoproteins (RNPs), or by monoclonal antibodies. In this study, we purified the rabies virus RNPs for the production of a conjugate presenting sensibility and specificity compatible with commercial reagents. The method employed for the purification of RNPs was ultracentrifugation in cesium chloride gradient, the obtained product being used for immunizing rabbits, from which the hyperimmune sera were collected. The serum used for conjugate production was the one presenting the highest titer (1/2,560) when tested by indirect immunofluorescence. The antibodies were purified by anion exchange chromatography (QAE-Sephadex A-50), conjugated to fluorescein isothiocyanate and separated by gel filtration (Sephadex G-50). The resulting conjugate presented titers of 1/400 and 1/500 when assayed by direct immunofluorescence (DIF) and simplified fluorescence inhibition microtest, respectively. Sensibility and specificity tests were performed by DIF in 100 central nervous system samples of different animal species, presenting 100% matches when compared with the commercial reagent used as standard, independent of the conservation state of the samples. The quality reached by our conjugate will enable the standardization of this reagent for use by the laboratories performing diagnosis of rabies in Brazil, contributing to the intensification of the epidemiological vigilance and research on this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.