A clinically important task in diabetes management is the prevention of hypo/hyperglycemic events. In this proof-of-concept paper, we assess the feasibility of approaching the problem with continuous glucose monitoring (CGM) devices. In particular, we study the possibility to predict ahead in time glucose levels by exploiting their recent history monitored every 3 min by a minimally invasive CGM system, the Glucoday, in 28 type 1 diabetic volunteers for 48 h. Simple prediction strategies, based on the description of past glucose data by either a first-order polynomial or a first-order autoregressive (AR) model, both with time-varying parameters determined by weighted least squares, are considered. Results demonstrate that, even by using these simple methods, glucose can be predicted ahead in time, e.g., with a prediction horizon of 30 min crossing of the hypoglycemic threshold can be predicted 20-25 min ahead in time, a sufficient margin to mitigate the event by sugar ingestion.
Background and Aims: Continuous glucose monitoring (CGM) devices could be useful for real-time management of diabetes therapy. In particular, CGM information could be used in real-time to predict future glucose levels in order to prevent hypo/hyperglycemic events. This paper proposes a new on-line method for predicting future glucose concentration levels from CGM data. Methods:The predictor is implemented with an artificial neural network model (NNM). The inputs of the NNM are the values provided by the CGM sensor during the preceding 20 minutes, while the output is the prediction of glucose concentration at the chosen prediction horizon (PH) time. The method performance is assessed using datasets from two different CGM systems (9 subjects using the Medtronic Guardian and 6 subjects using the Abbott Navigator). Three different PH are used, i.e. 15, 30 and 45 minutes. The NNM accuracy has been estimated by using the root mean square error (RMSE) and prediction delay. Results:The RMSE is around 10, 18 and 27 mg/dl for 15, 30 and 45 minutes of PH, respectively. The prediction delay is around 4, 9 and 14 minutes for upward trends and 5, 15 and 26 minutes for downward trends, respectively. A comparison with a previously published technique, based on an autoregressive model (ARM) [1], has been performed. The comparison shows that, the proposed NNM is more accurate than the ARM, with no significant deterioration in the prediction delay. Conclusions:The proposed NNM is a reliable solution for the on-line prediction of future glucose concentrations from CGM data.
By providing blood glucose (BG) concentration measurements in an almost continuous-time fashion for several consecutive days, wearable minimally-invasive continuous glucose monitoring (CGM) sensors are revolutionizing diabetes management, and are becoming an increasingly adopted technology especially for diabetic individuals requiring insulin administrations. Indeed, by providing glucose real-time insights of BG dynamics and trend, and being equipped with visual and acoustic alarms for hypo- and hyperglycemia, CGM devices have been proved to improve safety and effectiveness of diabetes therapy, reduce hypoglycemia incidence and duration, and decrease glycemic variability. Furthermore, the real-time availability of BG values has been stimulating the realization of new tools to provide patients with decision support to improve insulin dosage tuning and infusion. The aim of this paper is to offer an overview of current literature and future possible developments regarding CGM technologies and applications. In particular, first, we outline the technological evolution of CGM devices through the last 20 years. Then, we discuss about the current use of CGM sensors from patients affected by diabetes, and, we report some works proving the beneficial impact provided by the adoption of CGM. Finally, we review some recent advanced applications for diabetes treatment based on CGM sensors.
Background: In 2008–2009, the first multinational study was completed comparing closed-loop control (artificial pancreas) to state-of-the-art open-loop therapy in adults with type 1 diabetes mellitus (T1DM). Methods: The design of the control algorithm was done entirely in silico, i.e., using computer simulation experiments with N = 300 synthetic “subjects” with T1DM instead of traditional animal trials. The clinical experiments recruited 20 adults with T1DM at the Universities of Virginia (11); Padova, Italy (6); and Montpellier, France (3). Open-loop and closed-loop admission was scheduled 3–4 weeks apart, continued for 22 h (14.5 h of which were in closed loop), and used a continuous glucose monitor and an insulin pump. The only difference between the two sessions was that insulin dosing was performed by the patient under a physician's supervision during open loop, whereas insulin dosing was performed by a control algorithm during closed loop. Results: In silico design resulted in rapid (less than 6 months compared to years of animal trials) and cost-effective system development, testing, and regulatory approvals in the United States, Italy, and France. In the clinic, compared to open-loop, closed-loop control reduced nocturnal hypoglycemia (blood glucose below 3.9 mmol/liter) from 23 to 5 episodes (p < .01) and increased the amount of time spent overnight within the target range (3.9 to 7.8 mmol/liter) from 64% to 78% (p = .03). Conclusions: In silico experiments can be used as viable alternatives to animal trials for the preclinical testing of insulin treatment strategies. Compared to open-loop treatment under identical conditions, closed-loop control improves the overnight regulation of diabetes.
BackgroundPredicting protein function has become increasingly demanding in the era of next generation sequencing technology. The task to assign a curator-reviewed function to every single sequence is impracticable. Bioinformatics tools, easy to use and able to provide automatic and reliable annotations at a genomic scale, are necessary and urgent. In this scenario, the Gene Ontology has provided the means to standardize the annotation classification with a structured vocabulary which can be easily exploited by computational methods.ResultsArgot2 is a web-based function prediction tool able to annotate nucleic or protein sequences from small datasets up to entire genomes. It accepts as input a list of sequences in FASTA format, which are processed using BLAST and HMMER searches vs UniProKB and Pfam databases respectively; these sequences are then annotated with GO terms retrieved from the UniProtKB-GOA database and the terms are weighted using the e-values from BLAST and HMMER. The weighted GO terms are processed according to both their semantic similarity relations described by the Gene Ontology and their associated score. The algorithm is based on the original idea developed in a previous tool called Argot. The entire engine has been completely rewritten to improve both accuracy and computational efficiency, thus allowing for the annotation of complete genomes.ConclusionsThe revised algorithm has been already employed and successfully tested during in-house genome projects of grape and apple, and has proven to have a high precision and recall in all our benchmark conditions. It has also been successfully compared with Blast2GO, one of the methods most commonly employed for sequence annotation. The server is freely accessible at http://www.medcomp.medicina.unipd.it/Argot2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.