A clinically important task in diabetes management is the prevention of hypo/hyperglycemic events. In this proof-of-concept paper, we assess the feasibility of approaching the problem with continuous glucose monitoring (CGM) devices. In particular, we study the possibility to predict ahead in time glucose levels by exploiting their recent history monitored every 3 min by a minimally invasive CGM system, the Glucoday, in 28 type 1 diabetic volunteers for 48 h. Simple prediction strategies, based on the description of past glucose data by either a first-order polynomial or a first-order autoregressive (AR) model, both with time-varying parameters determined by weighted least squares, are considered. Results demonstrate that, even by using these simple methods, glucose can be predicted ahead in time, e.g., with a prediction horizon of 30 min crossing of the hypoglycemic threshold can be predicted 20-25 min ahead in time, a sufficient margin to mitigate the event by sugar ingestion.
The control of diabetes is an interdisciplinary endeavor, which includes a significant biomedical engineering component, with traditions of success beginning in the early 1960s. It began with modeling of the insulin-glucose system, and progressed to large-scale in silico experiments, and automated closed-loop control (artificial pancreas). Here, we follow these engineering efforts through the last, almost 50 years. We begin with the now classic minimal modeling approach and discuss a number of subsequent models, which have recently resulted in the first in silico simulation model accepted as substitute to animal trials in the quest for optimal diabetes control. We then review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the analyses of their time-series signals, and on the opportunities that they present for automation of diabetes control. Finally, we review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers. We conclude with a brief discussion of the unique interactions between human physiology, behavioral events, engineering modeling and control relevant to diabetes.
Background and Aims: Continuous glucose monitoring (CGM) devices could be useful for real-time management of diabetes therapy. In particular, CGM information could be used in real-time to predict future glucose levels in order to prevent hypo/hyperglycemic events. This paper proposes a new on-line method for predicting future glucose concentration levels from CGM data. Methods:The predictor is implemented with an artificial neural network model (NNM). The inputs of the NNM are the values provided by the CGM sensor during the preceding 20 minutes, while the output is the prediction of glucose concentration at the chosen prediction horizon (PH) time. The method performance is assessed using datasets from two different CGM systems (9 subjects using the Medtronic Guardian and 6 subjects using the Abbott Navigator). Three different PH are used, i.e. 15, 30 and 45 minutes. The NNM accuracy has been estimated by using the root mean square error (RMSE) and prediction delay. Results:The RMSE is around 10, 18 and 27 mg/dl for 15, 30 and 45 minutes of PH, respectively. The prediction delay is around 4, 9 and 14 minutes for upward trends and 5, 15 and 26 minutes for downward trends, respectively. A comparison with a previously published technique, based on an autoregressive model (ARM) [1], has been performed. The comparison shows that, the proposed NNM is more accurate than the ARM, with no significant deterioration in the prediction delay. Conclusions:The proposed NNM is a reliable solution for the on-line prediction of future glucose concentrations from CGM data.
By providing blood glucose (BG) concentration measurements in an almost continuous-time fashion for several consecutive days, wearable minimally-invasive continuous glucose monitoring (CGM) sensors are revolutionizing diabetes management, and are becoming an increasingly adopted technology especially for diabetic individuals requiring insulin administrations. Indeed, by providing glucose real-time insights of BG dynamics and trend, and being equipped with visual and acoustic alarms for hypo- and hyperglycemia, CGM devices have been proved to improve safety and effectiveness of diabetes therapy, reduce hypoglycemia incidence and duration, and decrease glycemic variability. Furthermore, the real-time availability of BG values has been stimulating the realization of new tools to provide patients with decision support to improve insulin dosage tuning and infusion. The aim of this paper is to offer an overview of current literature and future possible developments regarding CGM technologies and applications. In particular, first, we outline the technological evolution of CGM devices through the last 20 years. Then, we discuss about the current use of CGM sensors from patients affected by diabetes, and, we report some works proving the beneficial impact provided by the adoption of CGM. Finally, we review some recent advanced applications for diabetes treatment based on CGM sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.