Measured ice crystal concentrations in natural clouds at modest supercooling (temperature ;.2108C) are often orders of magnitude greater than the number concentration of primary ice nucleating particles. Therefore, it has long been proposed that a secondary ice production process must exist that is able to rapidly enhance the number concentration of the ice population following initial primary ice nucleation events. Secondary ice production is important for the prediction of ice crystal concentration and the subsequent evolution of some types of clouds, but the physical basis of the process is not understood and the production rates are not well constrained. In November 2015 an international workshop was held to discuss the current state of the science and future work to constrain and improve our understanding of secondary ice production processes. Examples and recommendations for in situ observations, remote sensing, laboratory investigations, and modeling approaches are presented.
Abstract. This paper discusses the influence of primary biological aerosols (PBA) on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.
Abstract. Ship tracks are a natural laboratory to isolate the effect of anthropogenic aerosol emissions on cloud properties. The Monterey Area Ship Tracks (MAST) experiment in the Pacific Ocean west of Monterey, California, in June 1994, provides an unprecedented data set for evaluating our understanding of the formation and persistence of the anomalous cloud features that characterize ship tracks. The data set includes conditions in which the marine boundary layer is both clean and continentally influenced. Two case studies during the MAST experiment are examined with a detailed aerosol microphysical model that considers an external mixture of independent particle populations. The model allows tracking individual particles through condensational and coagulational growth to identify the source of cloud condensation nuclei (CCN). In addition, a cloud microphysics model was employed to study specific effects of precipitation. Predictions and observations reveal important differences between clean (particle concentrations below 150 cm -3) and continentally influenced (particle concentrations above 400 cm-3 ) background conditions: in the continentally influenced conditions there is a smaller change in the cloud effective radius, drop number and liquid water content in the ship track relative to the background than in the clean marine case. Predictions of changes in cloud droplet number concentrations and effective radii are consistent with observations although there is significant uncertainty in the absolute concentrations due to a lack of measurements of the plume dilution. Gas-to-particle conversion of sulfur species produced by the combustion of ship fuel is predicted to be important in supplying soluble aerosol mass to combustion-generated particles, so as to render them available as CCN. Studies of the impact of these changes on the cloud's potential to precipitate concluded that more complex dynamical processes must be represented to allow sufficiently long drop activations for drizzle droplets to form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.