1. Monitoring at fortnightly to monthly intervals of a very shallow, lowland lake over 24 years has enabled the time course of recovery from nutrient enrichment to be investigated after high external P loading of the lake (>10 g P m )2 year )1 ) was reduced between 1977 and 1980. 2. The lake showed a relatively rapid response during the spring and early summer, with a reduction in phytoplankton biomass occurring after 5 years when soluble reactive phosphorus concentration was <10 lg L )1 . 3. However, during the later summer the response was delayed for 15 years because of sustained remobilisation of phosphorus from the sediment. The greater water clarity in spring and a gradual shift from planktonic to benthic algal growth may be related to the reduction in internal loading after 15 years. 4. Changes in the phytoplankton community composition were also observed. Centric diatoms became less dominant in the spring, and the summer cyanobacteria populations originally dominated by non-heterocystous species (Limnothrix/Planktothrix spp.) almost disappeared. Heterocystous species (Anabaena spp. and Aphanizomenon flos-aquae) were slower to decline, but after 20 years the phytoplankton community was no longer dominated by cyanobacteria. 5. There were no substantial changes in food web structure following re-oligotrophication. Total zooplankton biomass decreased but body size of Daphnia hyalina, the largest zooplankton species in the lake, remained unchanged, suggesting that the fish population remained dominated by planktivorous species. 6. Macrophyte growth was still largely absent after 20 years, although during the spring water clarity may have become sufficient for macrophytes to re-establish.
Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative propagules facilitating rapid initial growth and that can complete their life cycle by early summer. Later in the growing season these plants are, according to our simulations, outcompeted by periphyton, leading to late-summer phytoplankton blooms. Internal lake restoration measures often coincide with a rapid but transient colonization by hornworts, waterweeds or charophytes. Stable clear-water conditions and a diverse macrophyte flora only occurred decades after external nutrient load reduction or when measures were combined.
ABSTRACT1. The ecological status of shallow lakes is highly dependent on the abundance and composition of macrophytes. However, large-scale surveys are often confined to a small number of water bodies and undertaken only infrequently owing to logistical and financial constraints.2. Data acquired by the Compact Airborne Spectrographic Imager-2 (CASI-2) was used to map the distribution of macrophytes in the Upper Thurne region of the Norfolk Broads, UK. Three different approaches to image classification were evaluated: (i) Euclidean minimum distance, (ii) Gaussian maximum likelihood, and (iii) support vector machines.3. The results show macrophyte growth-habits (i.e. submerged, floating-leaved, partially-emergent, emergent) and submerged species could be mapped with a maximum overall classification accuracy of 78% and 87%, respectively. The Gaussian maximum likelihood algorithm and support vector machine returned the highest classification accuracies in each instance.4. This study suggests that remote sensing is a potentially powerful tool for large-scale assessment of the cover and distribution of aquatic vegetation in clear water shallow lakes, particularly with respect to upscaling field survey data to a functionally relevant form, and supporting site-condition monitoring under the European Union Habitats (92/43/EEC) and Water Framework (2000/60/EC) directives.
Lanthanum (La) modified bentonite is being increasingly used as a geo-engineering tool for the control of phosphorus (P) release from lake bed sediments to overlying waters. However, little is known about its effectiveness in controlling P across a wide range of lake conditions or of its potential to promote rapid ecological recovery. We combined data from 18 treated lakes to examine the lake population responses in the 24 months following La-bentonite application (range of La-bentonite loads: 1.4-6.7 tonnes ha(-1)) in concentrations of surface water total phosphorus (TP; data available from 15 lakes), soluble reactive phosphorus (SRP; 14 lakes), and chlorophyll a (15 lakes), and in Secchi disk depths (15 lakes), aquatic macrophyte species numbers (6 lakes) and aquatic macrophyte maximum colonisation depths (4 lakes) across the treated lakes. Data availability varied across the lakes and variables, and in general monitoring was more frequent closer to the application dates. Median annual TP concentrations decreased significantly across the lakes, following the La-bentonite applications (from 0.08 mg L(-1) in the 24 months pre-application to 0.03 mg L(-1) in the 24 months post-application), particularly in autumn (0.08 mg L(-1) to 0.03 mg L(-1)) and winter (0.08 mg L(-1) to 0.02 mg L(-1)). Significant decreases in SRP concentrations over annual (0.019 mg L(-1) to 0.005 mg L(-1)), summer (0.018 mg L(-1) to 0.004 mg L(-1)), autumn (0.019 mg L(-1) to 0.005 mg L(-1)) and winter (0.033 mg L(-1) to 0.005 mg L(-1)) periods were also reported. P concentrations following La-bentonite application varied across the lakes and were correlated positively with dissolved organic carbon concentrations. Relatively weak, but significant responses were reported for summer chlorophyll a concentrations and Secchi disk depths following La-bentonite applications, the 75th percentile values decreasing from 119 μg L(-1) to 74 μg L(-1) and increasing from 398 cm to 506 cm, respectively. Aquatic macrophyte species numbers and maximum colonisation depths increased following La-bentonite application from a median of 5.5 species to 7.0 species and a median of 1.8 m to 2.5 m, respectively. The aquatic macrophyte responses varied significantly between lakes. La-bentonite application resulted in a general improvement in water quality leading to an improvement in the aquatic macrophyte community within 24 months. However, because, the responses were highly site-specific, we stress the need for comprehensive pre- and post-application assessments of processes driving ecological structure and function in candidate lakes to inform future use of this and similar products.
1. We investigate long-term (>200 years) changes to the composition and spatial structure of macrophyte communities in a shallow, eutrophic lake (Barton Broad, eastern England) and consider the implications for lake restoration. 2. Historical macrophyte data were assembled from a variety of sources: existing plant databases, museum herbaria, journal articles, old photographs and eyewitness accounts. Additionally, two types of sediment core sample were analysed for plant macro-remains and pollen; bulk basal samples from multiple core sites analysed to provide information on ‘pre-disturbance' macrophyte communities and two whole cores analysed to determine historical change. 3. Prior to the late 1800s, macrophyte communities were diverse and included a multilayered mosaic of short-stature submerged taxa and taller submerged and floating-leaved species. With the progression of eutrophication after around 1900, the former community was displaced by the latter. Diversity was maintained, however, since an encroaching Schoenoplectus-nymphaeid swamp generated extensive patches of low-energy habitat affording refugia for several macrophytes otherwise unable to withstand the hydraulic forces associated with open water conditions. When this swamp vegetation disappeared in the 1950s, many of the ‘dependent' aquatic macrophytes also declined leaving behind a sparse, species-poor community (as today) resilient to both eutrophication and turbulent open waters. 4. The combination of historical and palaeolimnological data sources offers considerable benefits for reconstructing past changes to the aquatic vegetation of lakes and for setting restoration goals. In this respect, our study suggests that successful restoration might often be better judged by reinstatement of the characteristic structure of plant communities than the fine detail of species lists; when nutrients are low and the structure is right, the right species will follow
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.