1. Monitoring at fortnightly to monthly intervals of a very shallow, lowland lake over 24 years has enabled the time course of recovery from nutrient enrichment to be investigated after high external P loading of the lake (>10 g P m )2 year )1 ) was reduced between 1977 and 1980. 2. The lake showed a relatively rapid response during the spring and early summer, with a reduction in phytoplankton biomass occurring after 5 years when soluble reactive phosphorus concentration was <10 lg L )1 . 3. However, during the later summer the response was delayed for 15 years because of sustained remobilisation of phosphorus from the sediment. The greater water clarity in spring and a gradual shift from planktonic to benthic algal growth may be related to the reduction in internal loading after 15 years. 4. Changes in the phytoplankton community composition were also observed. Centric diatoms became less dominant in the spring, and the summer cyanobacteria populations originally dominated by non-heterocystous species (Limnothrix/Planktothrix spp.) almost disappeared. Heterocystous species (Anabaena spp. and Aphanizomenon flos-aquae) were slower to decline, but after 20 years the phytoplankton community was no longer dominated by cyanobacteria. 5. There were no substantial changes in food web structure following re-oligotrophication. Total zooplankton biomass decreased but body size of Daphnia hyalina, the largest zooplankton species in the lake, remained unchanged, suggesting that the fish population remained dominated by planktivorous species. 6. Macrophyte growth was still largely absent after 20 years, although during the spring water clarity may have become sufficient for macrophytes to re-establish.
The aim of European water policy is to achieve good ecological status in all rivers, lakes, coastal and transitional waters by 2027. Currently, more than half of water bodies are in a degraded condition and nutrient enrichment is one of the main culprits. Therefore, there is a pressing need to establish reliable and comparable nutrient criteria that are consistent with good ecological status.This paper highlights the wide range of nutrient criteria currently in use by Member States of the European Union to support good ecological status and goes on to suggest that inappropriate criteria may be hindering the achievement of good status. Along with a comprehensive overview of nutrient criteria, we provide a critical analysis of the threshold concentrations and approaches by which these are set. We identify four essential issues: (1) Different nutrients (nitrogen and/or phosphorus) are used for different water categories in different countries. (2) The use of different nutrient fractions (total, dissolved inorganic) and statistical summary metrics (e.g., mean, percentiles, seasonal, annual) currently hampers comparability between countries, particularly for rivers, transitional and coastal waters. (3) Wide ranges in nutrient threshold values within shared water body types, in some cases showing more than a 10-fold difference in concentrations. (4) Different approaches used to set threshold nutrient concentrations to define the boundary between “good” and “moderate” ecological status. Expert judgement-based methods resulted in significantly higher (less stringent) good-moderate threshold values compared with data-driven approaches, highlighting the importance of consistent and rigorous approaches to criteria setting.We suggest that further development of nutrient criteria should be based on relationships between ecological status and nutrient concentrations, taking into account the need for comparability between different water categories, water body types within these categories, and countries.
Lanthanum (La) modified bentonite is being increasingly used as a geo-engineering tool for the control of phosphorus (P) release from lake bed sediments to overlying waters. However, little is known about its effectiveness in controlling P across a wide range of lake conditions or of its potential to promote rapid ecological recovery. We combined data from 18 treated lakes to examine the lake population responses in the 24 months following La-bentonite application (range of La-bentonite loads: 1.4-6.7 tonnes ha(-1)) in concentrations of surface water total phosphorus (TP; data available from 15 lakes), soluble reactive phosphorus (SRP; 14 lakes), and chlorophyll a (15 lakes), and in Secchi disk depths (15 lakes), aquatic macrophyte species numbers (6 lakes) and aquatic macrophyte maximum colonisation depths (4 lakes) across the treated lakes. Data availability varied across the lakes and variables, and in general monitoring was more frequent closer to the application dates. Median annual TP concentrations decreased significantly across the lakes, following the La-bentonite applications (from 0.08 mg L(-1) in the 24 months pre-application to 0.03 mg L(-1) in the 24 months post-application), particularly in autumn (0.08 mg L(-1) to 0.03 mg L(-1)) and winter (0.08 mg L(-1) to 0.02 mg L(-1)). Significant decreases in SRP concentrations over annual (0.019 mg L(-1) to 0.005 mg L(-1)), summer (0.018 mg L(-1) to 0.004 mg L(-1)), autumn (0.019 mg L(-1) to 0.005 mg L(-1)) and winter (0.033 mg L(-1) to 0.005 mg L(-1)) periods were also reported. P concentrations following La-bentonite application varied across the lakes and were correlated positively with dissolved organic carbon concentrations. Relatively weak, but significant responses were reported for summer chlorophyll a concentrations and Secchi disk depths following La-bentonite applications, the 75th percentile values decreasing from 119 μg L(-1) to 74 μg L(-1) and increasing from 398 cm to 506 cm, respectively. Aquatic macrophyte species numbers and maximum colonisation depths increased following La-bentonite application from a median of 5.5 species to 7.0 species and a median of 1.8 m to 2.5 m, respectively. The aquatic macrophyte responses varied significantly between lakes. La-bentonite application resulted in a general improvement in water quality leading to an improvement in the aquatic macrophyte community within 24 months. However, because, the responses were highly site-specific, we stress the need for comprehensive pre- and post-application assessments of processes driving ecological structure and function in candidate lakes to inform future use of this and similar products.
Many inland waters are enriched with nutrients, causing deleterious effects to their ecology and the benefits they provide for society, but their effective management first requires identification of the nutrient(s) that limit algal production. Concentrations of nutrients and chlorophyll a (Chl-a) were used to assess nutrient limitation seasonally at 17 meres over 2 time periods: historic (2005-2009; 1995-1998 at one site) and contemporary (2014-2018). Different approaches were used to assess nutrient limitation because they reflect different aspects of nutrient availability and their conversion into biomass. In the historic period, 3 meres were phosphorus (P) limited, 3 nitrogen (N) limited, 5 co-limited; the remaining 6 meres were not nutrient limited. For this period, ecological status assessed using phytoplankton Chl-a was only at good or high ecological status (sensu the Water Framework Directive) at 2 sites. The contemporary period was slightly improved, with 4 sites at good status. At the sites that failed to meet good ecological status, the required reduction in P concentration was least in P-limited sites and, conversely, the reduction in N was least in N-limited sites, suggesting that remediation by nutrient reduction would be most efficient if it was targeted using site-specific information. Even in primarily P-limited sites, once input of P has been reduced, further ecological benefit of reducing N at targeted sites should be explored.
Although the Water Framework Directive specifies that macrophytes and phytobenthos should be used for the ecological assessment of lakes and rivers, practice varies widely throughout the EU. Most countries have separate methods for macrophytes and phytobenthos in rivers; however, the situation is very different for lakes. Here, 16 countries do not have dedicated phytobenthos methods, some include filamentous algae within macrophyte survey methods whilst others use diatoms as proxies for phytobenthos. The most widely-cited justification for not having a dedicated phytobenthos method is redundancy, i.e. that macrophyte and phytoplankton assessments alone are sufficient to detect nutrient impacts. Evidence from those European Union Member States that have dedicated phytobenthos methods supports this for high level overviews of lake condition and classification; however, there are a number of situations where phytobenthos may contribute valuable information for the management of lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.