The existing stock of institutional buildings constructed before current thermal regulation codes is known to be high-energy consuming. To make energy savings, retrofitting solutions have to deal with important transformations of those buildings (e.g. envelope, energy systems) and with better-suited management solutions. Such technical solutions quite often neglect occupants' comfort. The present work aims to develop and implement an energy audit protocol to tackle simultaneously the questions of thermal comfort and energy efficiency for higher education buildings. Our transverse approach allowed us to achieve a complementary view of the building under examination, including its operating conditions. At any rate, capturing the full complexity of a building-system (building energy devices, management strategies, and occupancy and behaviours impacts) requires a broad perspective and points to the limits of key-in-hand audits and solutions.
In the past decades the construction sector experienced the diffusion of a wide variety of complex building envelope components and passive elements and strategies, characterized by a dynamic response to the climatic parameters. Many of these components have been claimed to contribute to reducing building energy use and improving occupants' comfort. These kind of envelope elements need nevertheless to be tested under laboratory and real dynamic weather conditions in order to characterise, and possibly to model, their behaviour and their effectiveness both in terms of energy saving and indoor environmental quality. Both indoor laboratories and outdoor test cells have been developed in order to tackle the challenging issue of experimentally characterising innovative envelope elements. However, not always the experimental methodologies are fully and explicitly described in the available literature, and they are rarely compared to other types of experimental procedures. The aim of the present paper is to describe and review recent state of the art technologies for outdoor test cells. The paper starts with a short introduction on potentialities and limitations of outdoor facilities with respect to indoor laboratories and real buildings field tests, and it continues with a detailed classification and description of the most relevant outdoor test cells developed in recent years.
This paper presents the experimental validation of a thermal model describing the ZEB Test Cells Laboratory, located at the Gløshaugen campus of NTNU and SINTEF in Trondheim, Norway. Besides, a local sensitivity analysis identifies the parameters and inputs that are most influential on the thermal behaviour of the test cell, in terms of temperature profiles of the internal air and internal surfaces. The analysis shows that, in free-running conditions, the most important parameters and inputs, out of the 49 tested ones, are: the air temperature in the guard zone, the initial temperature(s) of the test cell envelope, the linear dimension of the square window, the solar irradiance on the vertical plane of the window, the depth of the test cell, the thermal conductivity and the thickness of the polyurethane layer in the envelope, the solar direct transmittance of the window, the internal height and width of the test cell, the external air temperature and the electrical power input to the mixing fan. Based on the outcome of the local sensitivity analysis and on in-field observations, some practical measures to improve the quality of the input data provided to a dynamic energy simulation tool, and thus the accuracy of prediction of the temperature evolution of the test cell. For example, we suggest monitoring accurately the environmental conditions in the guard zone, which are particularly influential under free-running conditions, and installing a global irradiance pyranometer next to the window in order to reduce the uncertainty related to the entering solar load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.