Manganese dioxide MnO2 compounds are widely used in electrochemical applications e.g. as electrode materials or photocatalysts. One of the most used polymorphs is γ-MnO2 which is a disordered intergrowth of...
Manganese dioxide is a good candidate for effective energy storage and conversion as it possesses a rich electrochemistry. The compound also shows a wide polymorphism. The γ-variety, an intergrowth of β- and R-MnO2, has been extensively studied in several types of batteries (e.g. Zn/MnO2, Li-ion) and is a common electrode material for commercial batteries. It is well known that the insertion of protons thermodynamically stabilises γ-MnO2 with respect to β-MnO2. Protons can enter the structure either by forming groups of 4 hydroxyls around a Mn4+ vacancy, called a Ruetschi defect, or by forming a hydroxyl group near a Mn3+ ion, called a Coleman defect. These defects differently affect the electrochemistry of manganese oxide, and tailoring their amount in the structure can be used to tune the material properties. Previous studies have addressed the proton insertion process, but the role of the synthesis pathway on the amount of defects created is not well understood. We here investigate how the parameters in a hydrothermal synthesis of γ-MnO2 nanoparticles influence the amount and type of H-related defects. Structural investigations are carried out using Pair Distribution Function analysis, X-ray absorption spectroscopy, thermogravimetric analysis, and inelastic neutron scattering. We demonstrate the possibility to control the amount and type of defects introduced during the synthesis. While the amount of Ruetschi defects increases with synthesis temperature, it decreases with extended synthesis time, along with the amount of Coleman defects. Moreover, we discuss the arrangement of the defects in the γ-MnO2 nanoparticles.
Understanding material nucleation processes is crucial for the development of synthesis pathways for tailormade materials. However, we currently have little knowledge of the influence of the precursor solution structure on the formation pathway of materials. We here use in situ total scattering to show how the precursor solution structure influences which crystal structure is formed during the hydrothermal synthesis of tungsten oxides. We investigate the synthesis of tungsten oxide from the two polyoxometalate salts, ammonium metatungstate and ammonium paratungstate. In both cases, a hexagonal ammonium tungsten bronze (NH4)0.25WO3, is formed as the final product. If the precursor solution contains metatungstate clusters, this phase forms directly in the hydrothermal synthesis. However, if the paratungstate B cluster is present at the time of crystallization, a metastable intermediate phase in the form of a pyrochlore-type tungsten oxide, WO30*5H2O, initially forms. The pyrochlore structure then undergoes a phase transformation into the tungsten bronze phase. Our studies thus experimentally show that the precursor cluster structure present at the moment of crystallization directly influences the formed crystalline phase and suggest that the precursor structure just prior to crystallization can be used as a tool for targeting specific crystalline phases of interest.
Understanding material nucleation processes is crucial for the development of synthesis pathways for tailormade materials. However, we currently have little knowledge of the influence of the precursor solution structure on the formation pathway of materials. We here use in situ total scattering to show how the precursor solution structure influences which crystal structure is formed during the hydrothermal synthesis of tungsten oxides. We investigate the synthesis of tungsten oxide from the two polyoxometalate salts, ammonium metatungstate and ammonium paratungstate. In both cases, a hexagonal ammonium tungsten bronze (NH4)0.25WO3, is formed as the final product. If the precursor solution contains metatungstate clusters, this phase forms directly in the hydrothermal synthesis. However, if the paratungstate B cluster is present at the time of crystallization, a metastable intermediate phase in the form of a pyrochlore-type tungsten oxide, WO30*5H2O, initially forms. The pyrochlore structure then undergoes a phase transformation into the tungsten bronze phase. Our studies thus experimentally show that the precursor cluster structure present at the moment of crystallization directly influences the formed crystalline phase and suggest that the precursor structure just prior to crystallization can be used as a tool for targeting specific crystalline phases of interest.
Sodalites of the general type |Na8X2|[T1T2O4]6 with X = Cl−, Br−, I− have been synthesized for Al–Si, Ga–Si, Al–Ge and Ga–Ge as T1–T2 frameworks. The structures were examined using in-house and synchrotron X-ray diffraction, Raman spectroscopy, force-field structure optimizations and DFT based ab-initio molecular dynamics (MD) computations. Calculated phonon density of states (PDOS) of the 12 compounds show only minor differences within a framework composition with a lowering of certain phonon energies with increasing anion size. Earlier published Debye and Einstein temperatures obtained with a Debye-Einstein-anharmonicity (DEA) model approach are confirmed using the determined low-temperature lattice parameters (18 K–293 K) and show no correlation with the respective PDOS. Small-box refinements against radial pair distribution functions (PDF) allowed the determination of anisotropic displacement ellipsoids (ADP) for Na+ and O2−, indicating a strong dependency of the ADP of Na+ on the chemical composition. Significantly lower thermal displacements from MD calculations suggested an influence of structural displacements. For compounds with an aspherical ADP for sodium, structural models could be refined in which the sodium is located on two 8e or one 24i site (both partially occupied), and also temperature-dependent (100 K–300 K) for the compounds with Ga–Ge framework. 3D-plots of the bond-valence sums of Na+ further validate the structural differences. These results imply that the local structure of halide-sodalites in many cases is not best described by the known average structure and may even not be cubic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.