Nanoparticles have drawn great attention as targeted imaging and/or therapeutic agents. The small size of the nanoparticles allows them to target cells that are beyond capillary vasculature, such as cancer cells. We investigated the effect of solid nanoparticles for enhancing ultrasonic grey scale images in tissue phantoms and mouse livers in vivo. Silica nanospheres (100 nm) were dispersed in agarose at 1-2.5% mass concentration and imaged by a high-resolution ultrasound imaging system (transducer centre frequency: 30 MHz). Polystyrene particles of different sizes (500-3000 nm) and concentrations (0.13-0.75% mass) were similarly dispersed in agarose and imaged. Mice were injected intravenously with nanoparticle suspensions in saline. B-mode images of the livers were acquired at different time points after particle injection. An automated computer program was used to quantify the grey scale changes. Ultrasonic reflections were observed from nanoparticle suspensions in agarose gels. The image brightness, i.e., mean grey scale level, increased with particle size and concentration. The mean grey scale of mouse livers also increased following particle administration. These results indicated that it is feasible to use solid nanoparticles as contrast enhancing agents for ultrasonic imaging.
Hypercalcemia resulted in hypomagnesemia, hypokalemia, and hyperphosphatemia; increased urinary excretion of calcium, magnesium, potassium, sodium, phosphate, and chloride; and induced diuresis. This study has clinical implications because hypercalcemia and excessive administration of calcium have the potential to increase urinary excretion of electrolytes, especially iMg, and induce volume depletion.
The pathogenesis of bone metastases may require the activation of osteoclasts by tumor-secreted factors, which promote important interactions with the bone microenvironment. We utilized an intratibial model of bone metastasis with bioluminescent imaging (BLI) to measure the effect of osteoclast inhibition on the interaction of human lung cancer cells with bone, and on tumor growth. Mice were injected with luciferase-transduced tumor cells (HARA, human pulmonary squamous carcinoma) and divided into three groups: (1) untreated, (2) twice weekly treatment with the bisphosphonate zoledronic acid (ZOL), or (3) osteoprotegerin (OPG). Histomorphometry and imaging were used to evaluate tumor burden, and parameters of osteoclast activity. Mice in the treated groups had increased bone density and decreased osteoclast numbers in nontumor-bearing tibiae. There was greater than 60% reduction in mean tumor volume in both treatment groups when evaluated by histomorphometry (P = 0.06 [OPG], P = 0.07 [ZOL]). However, bioluminescent imaging failed to show a reduction in tumor burden due to wide variability in the data. Osteoclast numbers along tumor-associated bone were significantly increased compared to tumor-free bone, and were not reduced by either treatment. Plasma calcium concentration was increased in all groups. Plasma tartrate-resistant acid phosphatase 5b was reduced in both treatment groups. Plasma PTHrP was significantly increased in the untreated tumor-bearing group, but was not significantly different in the two treatment groups compared to normal mice. OPG or ZOL did not change tumor cell proliferation, but ZOL increased HARA cell apoptosis. OPG and ZOL reduced tumor growth in the tibiae of treated mice, however, PTHrP production by HARA cells may have resulted in a high concentration in the bone microenvironment, partially overriding the antiosteoclast effects of both OPG and ZOL.
Head and neck squamous cell carcinoma (H/N SCC) is a devastating disease in humans and cats, and shares similar features between the two species. The large population of pet cats in the United States, along with the high incidence of oral SCC in the cat, makes the cat an attractive candidate as a natural model for the human disease. There are similarities in pathology, progression, outcome, resistance to treatment, possible aetiologies and p53 expression, and we discuss the benefits of the cat as a natural model. We describe the development of a nude mouse xenograft model of feline oral SCC using the SCCF1 cell line transfected with a luciferase expression construct. In vivo tumour growth and metastasis were measured using serial bioluminescent imaging, and tumours grew best in the subcutis. The cat and nude mouse models will be useful to investigate the pathogenesis and the molecular basis of H/N SCC, and for preclinical drug screening.
Matrix metalloproteinases (MMPs) are proteolytic enzymes that play critical roles in the pathogenesis of human cancers. Clinical trials using synthetic small molecule MMP inhibitors have been carried out but with little success. Tissue inhibitors of metallopro-teinases (TIMPs) are endogenous inhibitors that block the extrac-ellular matrix-degrading activity of MMPs. Here, we investigated the possibilities of genetically modifying human bones with TIMPs to create a high-TIMP bone microenvironment, which is hostile to metastatic prostate cancer cells using adenovirus-mediated gene transfer technology and SCID-hu end-organ coloniza-tion mouse model. Two strategies were used to achieve bone-specific TIMP expression: (i) ex vivo bone adenoviral infection followed by in vivo bone implantation; and (ii) ex vivo BMS cell infection followed by injection into in vivo implanted human fetal bones. PC-3 prostate cancer cells were injected into human fetal bones 4 weeks after implantation in SCID mice. In vitro, adenovi-rus-mediated expression of TIMP-1 or TIMP-2 in bone fragments inhibited MMP-2 activity, bone turnover and prostate cancer cell-induced proteolytic degradation as determined by gelatin zymography, calcium measurement and DQ protein quenched fluorescence assay, respectively. In vivo, immunohistochemistry confirmed TIMP-2 expression in AdTIMP-2-infected bone implants 4 weeks after implantation in SCID mice. Mice receiving AdTIMP-treated bone fragments showed significantly reduced PC-3-induced osteolysis, osteoclast recruitment and bone turnover in the implanted bones. We propose that adenoviral gene transfer of TIMP-1 and TIMP-2 can prevent the proteolytic activity of prostate cancer cells in bone and that enhancing anti-proteolytic defense mechanisms in target organs represents a promising form of prostate cancer gene therapy. ' 2007 Wiley-Liss, Inc. Key words: prostate cancer; matrix metalloproteinases; tissue inhibitors of metalloproteinases; recombinant adenovirus; bone metastasis; SCID-hu mouse model Prostate cancer (PCa) is the most common type of cancer in men and the second leading cause of cancer-related deaths in men in the US. 1 Metastases to bone, which occur early in the course of disease, are responsible for most of the morbidity associated with this disease. 2 Currently available therapeutic modalities for PCa, such as surgery, androgen ablation, radiation and chemotherapy, are mostly palliative and have failed to cure patients with advanced disease. 3 Therefore, new approaches to treat PCa bone metastasis are urgently needed. It has been reported that therapies that specifically target bone metastases using bone-homing radio-nuclides (such as strontium-89) alone or in combination with chemotherapy may extend survival in PCa patients in randomized clinical trials. 4,5 However, while the results are not conclusive and need further confirmation, dose-limiting toxicity of the radionu-clides remains a problem that hampers their further application. Recently, improved understanding of molecular pathways...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.