We report the direct delivery and assembly of negatively charged gold colloidal particles atop positively charged amino-terminated silicon oxide surfaces using a nanofountain atomic force microscopy probe. The experimental results and fluid simulations indicate that the flow of nanoparticles is confined to the core tip region of the probe. This leads to the assembly of high-resolution submicron patterns (200 nm) on the substrate with feature sizes dependent on the tip-substrate contact time. A diffusion mechanism for the patterning is proposed and discussed.
We report nanofabrication of protein dot and line patterns using a nanofountain atomic force microscopy probe (NFP). Biomolecules are continuously fed in solution through an integrated microfluidic system, and deposited directly onto a substrate. Deposition is controlled by application of an electric potential of appropriate sign and magnitude between the probe reservoir and substrate. Submicron dot and line molecular patterns were generated with resolution that depended on the magnitude of the applied voltage, dwell time, and writing speed. By using an energetic argument and a Kelvin condensation model, the quasi-equilibrium liquid-air interface at the probe tip was determined. The analysis revealed the origin of the need for electric fields in achieving protein transport to the substrate and confirmed experimental observations suggesting that pattern resolution is controlled by tip sharpness and not overall probe aperture. As such, the NFP combines the highresolution of dip-pen nanolithography with the efficient continuous liquid feeding of micropipettes while allowing scalability to 1-and 2D probe arrays for high throughput.arrays ͉ atomic force microscopy ͉ nanolithography ͉ patterning ͉ nanofabrication
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.