Until recently, rare-earth elements (REEs) had been thought to be biologically inactive. This view changed with the discovery of the methanol dehydrogenase XoxF that strictly relies on REEs for its activity. Some methylotrophs only contain xoxF, while others, including the model phyllosphere colonizer Methylobacterium extorquens PA1, harbor this gene in addition to mxaFI encoding a Ca 2+ -dependent enzyme. Here we found that REEs induce the expression of xoxF in M. extorquens PA1, while repressing mxaFI, suggesting that XoxF is the preferred methanol dehydrogenase in the presence of sufficient amounts of REE. Using reporter assays and a suppressor screen, we found that lanthanum (La 3+ ) is sensed both in a XoxF-dependent and independent manner. Furthermore, we investigated the role of REEs during Arabidopsis thaliana colonization. Element analysis of the phyllosphere revealed the presence of several REEs at concentrations up to 10 μg per g dry weight. Complementary proteome analyses of M. extorquens PA1 identified XoxF as a top induced protein in planta and a core set of La 3+regulated proteins under defined artificial media conditions. Among these was a REE-binding protein that is encoded next to a gene for a TonB-dependent transporter.The latter was essential for REE-dependent growth on methanol indicating chelator-assisted uptake of REEs.
Methylotrophy is the ability to use reduced one-carbon compounds, such as methanol, as a single source of carbon and energy. Methanol is, due to its availability and potential for production from renewable resources, a valuable feedstock for biotechnology. Nature offers a variety of methylotrophic microorganisms that differ in their metabolism and represent resources for engineering of value-added products from methanol. The most extensively studied methylotroph is the Alphaproteobacterium Methylobacterium extorquens. Over the past five decades, the metabolism of M. extorquens has been investigated physiologically, biochemically, and more recently, using complementary omics technologies such as transcriptomics, proteomics, metabolomics, and fluxomics. These approaches, together with a genome-scale metabolic model, facilitate system-wide studies and the development of rational strategies for the successful generation of desired products from methanol. This review summarizes the knowledge of methylotrophy in M. extorquens, as well as the available tools and biotechnological applications.
a b s t r a c tIn the Gram-positive methylotroph Bacillus methanolicus, methanol oxidation is catalyzed by an NAD-dependent methanol dehydrogenase (Mdh) that belongs to the type III alcohol dehydrogenase (Adh) family. It was previously shown that the in vitro activity of B. methanolicus Mdh is increased by the endogenous activator protein Act, a Nudix hydrolase. Here we show that this feature is not unique, but more widespread among type III Adhs in combination with Act or other Act-like Nudix hydrolases. In addition, we studied the effect of site directed mutations in the predicted active site of Mdh and two other type III Adhs with regard to activity and activation by Act.
Methylotrophy is the ability of organisms to grow at the expense of reduced one-carbon compounds, such as methanol or methane. Here, we used transposon sequencing combining hyper-saturated transposon mutagenesis with high-throughput sequencing to define the essential methylotrophy genome of Methylobacterium extorquens PA1, a model methylotroph. To distinguish genomic regions required for growth only on methanol from general required genes, we contrasted growth on methanol with growth on succinate, a non-methylotrophic reference substrate. About 500,000 insertions were mapped for each condition, resulting in a median insertion distance of five base pairs. We identified 147 genes and 76 genes as specific for growth on methanol and succinate, respectively, and a set of 590 genes as required under both growth conditions. For the integration of metabolic functions, we reconstructed a genome-scale metabolic model and performed in silico essentiality analysis. In total, the approach uncovered 95 genes not previously described as crucial for methylotrophy, including genes involved in respiration, carbon metabolism, transport, and regulation. Strikingly, regardless of the absence of the Calvin cycle in the methylotroph, the screen led to the identification of the gene for phosphoribulokinase as essential during growth on methanol, but not during growth on succinate. Genetic experiments in addition to metabolomics and proteomics revealed that phosphoribulokinase serves a key regulatory function. Our data support a model according to which ribulose-1,5-bisphosphate is an essential metabolite that induces a transcriptional regulator driving one-carbon assimilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.