Until recently, rare-earth elements (REEs) had been thought to be biologically inactive. This view changed with the discovery of the methanol dehydrogenase XoxF that strictly relies on REEs for its activity. Some methylotrophs only contain xoxF, while others, including the model phyllosphere colonizer Methylobacterium extorquens PA1, harbor this gene in addition to mxaFI encoding a Ca 2+ -dependent enzyme. Here we found that REEs induce the expression of xoxF in M. extorquens PA1, while repressing mxaFI, suggesting that XoxF is the preferred methanol dehydrogenase in the presence of sufficient amounts of REE. Using reporter assays and a suppressor screen, we found that lanthanum (La 3+ ) is sensed both in a XoxF-dependent and independent manner. Furthermore, we investigated the role of REEs during Arabidopsis thaliana colonization. Element analysis of the phyllosphere revealed the presence of several REEs at concentrations up to 10 μg per g dry weight. Complementary proteome analyses of M. extorquens PA1 identified XoxF as a top induced protein in planta and a core set of La 3+regulated proteins under defined artificial media conditions. Among these was a REE-binding protein that is encoded next to a gene for a TonB-dependent transporter.The latter was essential for REE-dependent growth on methanol indicating chelator-assisted uptake of REEs.
Methanol is a liquid with high energy storage capacity that holds promise as an alternative substrate to replace sugars in the biotechnology industry. It can be produced from CO2 or methane and its use does not compete with food and animal feed production. However, there are currently only limited biotechnological options for the valorization of methanol, which hinders its widespread adoption. Here, we report the conversion of the industrial platform organism Escherichia coli into a synthetic methylotroph that assimilates methanol via the energy efficient ribulose monophosphate cycle. Methylotrophy is achieved after evolution of a methanol-dependent E. coli strain over 250 generations in continuous chemostat culture. We demonstrate growth on methanol and biomass formation exclusively from the one-carbon source by 13C isotopic tracer analysis. In line with computational modeling, the methylotrophic E. coli strain optimizes methanol oxidation by upregulation of an improved methanol dehydrogenase, increasing ribulose monophosphate cycle activity, channeling carbon flux through the Entner-Doudoroff pathway and downregulating tricarboxylic acid cycle enzymes. En route towards sustainable bioproduction processes, our work lays the foundation for the efficient utilization of methanol as the dominant carbon and energy resource.
Plants, like other multicellular lifeforms, are colonized by microorganisms. How plants respond to their microbiota is currently not well understood. We used a phylogenetically diverse set of 39 endogenous bacterial strains from Arabidopsis thaliana leaves to assess host transcriptional and metabolic adaptations to bacterial encounters. We identified a molecular response, which we termed the general non-self response (GNSR) that involves the expression of a core set of 24 genes. The GNSR genes are not only consistently induced by the presence of a majority of strains, they also comprise the most differentially regulated genes across treatments and are predictive of a hierarchical transcriptional reprogramming beyond the GNSR. Using a complementary untargeted metabolomics approach we link the GNSR to the tryptophan derived secondary metabolism, highlighting the importance of small molecules in plant microbe interactions. We demonstrate that several of the GNSR genes are required for resistance against the bacterial pathogen Pseudomonas syringae . Our results suggest that the GNSR constitutes a defense adaptation strategy that is consistently elicited by diverse strains from various phyla, contributes to host protection and involves secondary metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.