SummaryOcean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms.Video Abstract
Multicellular organisms including plants are colonised by microorganisms, some of which are beneficial to growth and health. The assembly rules for establishing the plant microbiota are not well understood, and neither is the extent to which their members interact. We conducted drop-out and late introduction experiments by inoculating Arabidopsis thaliana with synthetic communities from a resource of 62 native bacterial strains to test how arrival order shapes community structure. As a read-out we tracked the relative abundance of all strains in the phyllosphere of individual plants. Our results showed that community assembly is historically contingent and subject to priority effects. Missing strains could, to various degrees, invade an already established microbiota, which was itself resistant and remained largely unaffected by latecomers. Additionally, our results indicate that individual Proteobacteria (Sphingomonas, Rhizobium) and Actinobacteria (Microbacterium, Rhodococcus) strains have the greatest potential to affect community structure as keystone species.
The plant microbiota consists of a multitude of microorganisms that can impact plant health and fitness. However, it is currently unclear how the plant shapes its leaf microbiota and what role the plant immune system plays in this process. Here, we evaluated
Arabidopsis thaliana
mutants with defects in different parts of the immune system for an altered bacterial community assembly using a gnotobiotic system. While higher order mutants in receptors that recognize microbial features and in defense hormone signaling showed pronounced microbial community alterations, the absence of the plant NADPH oxidase RBOHD caused the most substantial change in the composition of the leaf microbiota. The
rbohD
knockout resulted in an enrichment of specific bacteria. Among these, we identified
Xanthomonas
strains as opportunistic pathogens that colonized wild-type plants asymptomatically but caused disease in
rbohD
knockout plants. Strain dropout experiments revealed that the lack of RBOHD unlocks the pathogenicity of individual microbiota members driving dysbiosis in
rbohD
knockout plants. For full protection, healthy plants require both a functional immune system and a microbial community. Our results show that the NADPH oxidase RBOHD is essential for microbiota homeostasis and emphasizes the importance of the plant immune system in controlling the leaf microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.