Flaviviruses such as Yellow fever, Dengue, West Nile, and Zika generate disease-linked viral noncoding RNAs called subgenomic flavivirus RNAs. Subgenomic flavivirus RNAs result when the 5′–3′ progression of cellular exoribonuclease Xrn1 is blocked by RNA elements called Xrn1-resistant RNAs located within the viral genome’s 3′-untranslated region that operate without protein co-factors. Here, we show that Xrn1-resistant RNAs can halt diverse exoribonucleases, revealing a mechanism in which they act as general mechanical blocks that ‘brace’ against an enzyme’s surface, presenting an unfolding problem that confounds further enzyme progression. Further, we directly demonstrate that Xrn1-resistant RNAs exist in a diverse set of flaviviruses, including some specific to insects or with no known arthropod vector. These Xrn1-resistant RNAs comprise two secondary structural classes that mirror previously reported phylogenic analysis. Our discoveries have implications for the evolution of exoribonuclease resistance, the use of Xrn1-resistant RNAs in synthetic biology, and the development of new therapies.
The 26S proteasome is ubiquitinated by proteasome-associating ubiquitination enzymes. Proteasome ubiquitination impairs proteasomal degradation and is regulated by deubiquitination, substrate binding, and cellular stress. It is proposed that in situ ubiquitination autoregulates proteasomal activity in cells.
Structured RNA elements, programmed RNA conformational changes, and interactions between different RNA domains underlie many modes of regulating gene expression, mandating studies to understand the foundational principles that govern these phenomena. Exploring the structured 3′ untranslated region (UTR) of a viral RNA, we discovered that different contexts of the 3′-UTR confer different abilities to enhance translation of an associated open reading frame. In one context, ribosome-induced conformational changes in a ‘sensor’ RNA domain affect a separate RNA ‘functional’ domain, altering translation efficiency. The structure of the entire 3′-UTR reveals that structurally distinct domains use a spine of continuously stacked bases and a strut-like linker to create a conduit for communication within the higher-order architecture. Thus, this 3′-UTR RNA illustrates how RNA can use programmed conformational changes to sense the translation status of an upstream open reading frame, then create a tuned functional response by communicating that information to other RNA elements.
A tricky mimicry RNA viruses use dynamic, multifunctional folded elements to hijack host cellular machinery. Bonilla et al . used cryo–electron microscopy (cryo-EM) to explore an RNA element from Brome mosaic virus that tricks host cell tyrosine transfer RNA synthetase (TyrRS) into adding a tyrosine to the viral genome’s 3′ end. Visualizing this RNA both in isolation and bound to a cellular TyrRS revealed a bound structure unlike the canonical transfer RNA L-like shape and conformational rearrangements in the RNA upon binding to the TyrRS, which suggests a multistep process of enzyme recognition. This study highlights the power of cryo-EM to illustrate dynamic processes involving small structured RNAs and RNA-protein complexes. —DJ
Viruses commonly use specifically folded RNA elements that interact with both host and viral proteins to perform functions important for diverse viral processes. Examples are found at the 3′ termini of certain positive-sense ssRNA virus genomes where they partially mimic tRNAs, including being aminoacylated by host cell enzymes. Valine-accepting tRNA-like structures (TLS Val ) are an example that share some clear homology to canonical tRNAs but have several important structural differences. Although many examples of TLS Val have been identified, we lacked a full understanding of their structural diversity and phylogenetic distribution. To address this, we undertook an in-depth bioinformatic and biochemical investigation of these RNAs, guided by recent high-resolution structures of a TLS Val . We cataloged many new examples in plant-infecting viruses but also in unrelated insect-specific viruses. Using biochemical and structural approaches, we verified the secondary structure of representative TLS Val substrates and tested their ability to be valylated, finding structural heterogeneity within this class. In a few cases, large stem-loop structures are inserted within distinct variable regions located in an area of the TLS distal to known host cell factor binding sites. In addition, we identified one virus whose TLS has switched its anticodon away from valine; the implications of this remain unclear. These results refine our understanding of the structural and functional mechanistic details of tRNA mimicry and how this may be used in viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.