Flaviviruses such as Yellow fever, Dengue, West Nile, and Zika generate disease-linked viral noncoding RNAs called subgenomic flavivirus RNAs. Subgenomic flavivirus RNAs result when the 5′–3′ progression of cellular exoribonuclease Xrn1 is blocked by RNA elements called Xrn1-resistant RNAs located within the viral genome’s 3′-untranslated region that operate without protein co-factors. Here, we show that Xrn1-resistant RNAs can halt diverse exoribonucleases, revealing a mechanism in which they act as general mechanical blocks that ‘brace’ against an enzyme’s surface, presenting an unfolding problem that confounds further enzyme progression. Further, we directly demonstrate that Xrn1-resistant RNAs exist in a diverse set of flaviviruses, including some specific to insects or with no known arthropod vector. These Xrn1-resistant RNAs comprise two secondary structural classes that mirror previously reported phylogenic analysis. Our discoveries have implications for the evolution of exoribonuclease resistance, the use of Xrn1-resistant RNAs in synthetic biology, and the development of new therapies.
Cells and mice infected with arthropod-borne flaviviruses produce a small subgenomic RNA that is colinear with the distal part of the viral 3-untranslated region (UTR). This small subgenomic flavivirus RNA (sfRNA) results from the incomplete degradation of the viral genome by the host 5-3 exonuclease XRN1. Production of the sfRNA is important for the pathogenicity of the virus. This study not only presents a detailed description of the yellow fever virus (YFV) sfRNA but, more importantly, describes for the first time the molecular characteristics of the stalling site for XRN1 in the flavivirus genome. Similar to the case for West Nile virus, the YFV sfRNA was produced by XRN1. However, in contrast to the case for other arthropod-borne flaviviruses, not one but two sfRNAs were detected in YFV-infected mammalian cells. The smaller of these two sfRNAs was not observed in infected mosquito cells. The larger sfRNA could also be produced in vitro by incubation with purified XRN1. These two YFV sfRNAs formed a 5-nested set. The 5 ends of the YFV sfRNAs were found to be just upstream of the previously predicted RNA pseudoknot PSK3. RNA structure probing and mutagenesis studies provided strong evidence that this pseudoknot structure was formed and served as the molecular signal to stall XRN1. The sequence involved in PSK3 formation was cloned into the Sinrep5 expression vector and shown to direct the production of an sfRNA-like RNA. These results underscore the importance of the RNA pseudoknot in stalling XRN1 and also demonstrate that it is the sole viral requirement for sfRNA production.The Flavivirus genus contains nearly 80 viruses distributed worldwide and includes important human pathogens such as dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and tickborne encephalitis virus (TBEV). Phylogenetic analysis clustered flaviviruses into the following three major groups, based on the vector of transmission: (i) mosquito-borne viruses, (ii) tick-borne viruses, and (iii) viruses with no known vector (NKV) (13,26).Flaviviruses are small enveloped viruses containing a positive-sense single-stranded RNA genome of approximately 11 kb in length, with a 5Ј cap structure and a 3Ј nonpolyadenylated terminus. The genomic RNA is flanked by 5Ј-and 3Ј-untranslated regions (UTRs) and encodes a single polyprotein that is co-and posttranslationally processed by viral and cellular proteases into three structural proteins (C, prM, and E) and seven nonstructural proteins (NSs) (reviewed in reference 30). Apart from the viral genomic RNA and the replicationrelated replicative-form and intermediate RNAs (11,12), an additional small flavivirus RNA (sfRNA) has been detected in mice and both mammalian and insect cells infected with flaviviruses belonging to the JEV serogroup (29,49,56). Recently, it was shown that production of sfRNA is not unique to JEV and closely related viruses but that all arthropod-borne flaviviruses generate an sfRNA upon infection of mammalian cells (31,44). The ...
BackgroundFollowing fertilization, the early proteomes of metazoans are defined by the translation of stored but repressed transcripts; further embryonic development relies on de novo transcription of the zygotic genome. During sexual development of Plasmodium berghei, a rodent model for human malaria species including P. falciparum, the stability of repressed mRNAs requires the translational repressors DOZI and CITH. When these repressors are absent, Plasmodium zygote development and transmission to the mosquito vector is halted, as hundreds of transcripts become destabilized. However, which mRNAs are direct targets of these RNA binding proteins, and thus subject to translational repression, is unknown.ResultsWe identify the maternal mRNA contribution to post-fertilization development of P. berghei using RNA immunoprecipitation and microarray analysis. We find that 731 mRNAs, approximately 50% of the transcriptome, are associated with DOZI and CITH, allowing zygote development to proceed in the absence of RNA polymerase II transcription. Using GFP-tagging, we validate the repression phenotype of selected genes and identify mRNAs relying on the 5′ untranslated region for translational control. Gene deletion reveals a novel protein located in the ookinete crystalloid with an essential function for sporozoite development.ConclusionsOur study details for the first time the P. berghei maternal repressome. This mRNA population provides the developing ookinete with coding potential for key molecules required for life-cycle progression, and that are likely to be critical for the transmission of the malaria parasite from the rodent and the human host to the mosquito vector.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-014-0493-0) contains supplementary material, which is available to authorized users.
Regulated protein secretion is required for malaria parasite life cycle progression and transmission between the mammalian host and mosquito vector. During transmission from the host to the vector, exocytosis of highly specialised secretory vesicles, such as osmiophilic bodies, is key to the dissolution of the red blood cell and parasitophorous vacuole membranes enabling gamete egress. The positioning of adhesins from the TRAP family, from micronemes to the sporozoite surface, is essential for gliding motility of the parasite and transmission from mosquito to mammalian host. Here we identify a conserved role for the putative pantothenate transporter PAT in Plasmodium berghei in vesicle fusion of two distinct classes of vesicles in gametocytes and sporozoites. PAT is a membrane component of osmiophilic bodies in gametocytes and micronemes in sporozoites. Despite normal formation and trafficking of osmiophilic bodies to the cell surface upon activation, PAT-deficient gametes fail to discharge their contents, remain intraerythrocytic and unavailable for fertilisation and further development in the mosquito. Sporozoites lacking PAT fail to secrete TRAP, are immotile and thus unable to infect the subsequent rodent host. Thus, P. berghei PAT appears to regulate exocytosis in two distinct populations of vesicles in two different life cycle forms rather than acting as pantothenic transporter during parasite transmission.
The pentanucleotide (PN) sequence 59-CACAG-39 at the top of the 39 stem-loop structure of the flavivirus genome is well conserved in the arthropod-borne viruses but is more variable in flaviviruses with no known vector. In this study, the sequence requirements of the PN motif for yellow fever virus 17D (YFV) replication were determined. In general, individual mutations at either the second, third or fourth positions were tolerated and resulted in replication-competent virus. Mutations at the fifth position were lethal. Base pairing of the nucleotide at the first position of the PN motif and a nucleotide four positions downstream of the PN (ninth position) was a major determinant for replication. Despite the fact that the majority of the PN mutants were able to replicate efficiently, they were outcompeted by parental YFV-17D virus following repeated passages in double-infected cell cultures. Surprisingly, some of the virus mutants at the first and/ or the ninth position that maintained the possibility of forming a base pair were found to have a similar fitness to YFV-17D under these conditions. Overall, these experiments suggest that YFV is less dependent on sequence conservation of the PN motif for replication in animal cells than West Nile virus. However, in animal cell culture, YFV has a preference for the wt CACAG PN sequence. The molecular mechanisms behind this preference remain to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.