The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and nucleus, into the endoplasmic reticulum and Golgi apparatus where glycosylation reactions occur. Thirty years of research utilising multidisciplinary approaches has contributed to our current understanding of NST function and structure. In this review, the structure and function, with reference to various disease states, of several NSTs including the UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, GDP-fucose, UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose and CMP-sialic acid transporters will be described. Little is known regarding the exact structure of NSTs due to difficulties associated with crystallising membrane proteins. To date, no three-dimensional structure of any NST has been elucidated. What is known is based on computer predictions, mutagenesis experiments, epitope-tagging studies, in-vitro assays and phylogenetic analysis. In this regard the best-characterised NST to date is the CMP-sialic acid transporter (CST). Therefore in this review we will provide the current state-of-play with respect to the structure–function relationship of the (CST). In particular we have summarised work performed by a number groups detailing the affect of various mutations on CST transport activity, efficiency, and substrate specificity.
The gene slpA, encoding the S-layer precursor protein in the virulent Clostridium difficile strains C253 and 79-685, was identified. The precursor protein carries a C-terminal highly conserved anchoring domain, similar to the one found in the Cwp66 adhesin (previously characterized in strain 79-685), an SLH domain, and a variable N-terminal domain mediating cell adherence. The genes encoding the S-layer precursor proteins and the Cwp66 adhesin are present in a genetic locus carrying 17 open reading frames, 11 of which encode a similar two-domain architecture, likely to include surface-anchored proteins.
SignificanceInflammation is a protective response of the body’s immune system against harmful stimuli such as pathogenic microorganisms, toxins, or damaged cells. However, if excessive or prolonged, inflammation may be harmful and therefore has to be regulated. Soluble CD52 is a natural sialoglycopeptide and immune regulator that suppresses inflammatory responses. We elucidated the mechanism of this effect by showing that soluble CD52 first sequesters a mediator of inflammation called HMGB1; in turn, this promotes binding of the sialylated CD52 glycan to an inhibitory receptor, sialic acid-binding immunoglobulin-like lectin (Siglec)-10, present on activated T cells and other immune cells. This concerted antiinflammatory mechanism driven by soluble CD52 may contribute to immune-inflammatory homeostasis and underscores the therapeutic potential of soluble CD52.
The binding of a natural anthocyanin to influenza neuraminidase has been studied employing mass spectrometry and molecular docking. Derived from a black elderberry extract, cyanidin-3-sambubiocide has been found to be a potent inhibitor of sialidase activity. This study reveals the molecular basis for its activity for the first time. The anthocyanin is shown by parallel experimental and computational approaches to bind in the so-called 430-cavity in the vicinity of neuraminidase residues 356-364 and 395-432. Since this antiviral compound binds remote from Asp 151 and Glu 119, two residues known to regulate neuraminidase resistance, it provides the potential for the development of a new class of antivirals against the influenza virus without this susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.