Trapping phenomena degrade the dynamic performance of wide-bandgap transistors. However, the identification of the related traps is challenging, especially in presence of non-ideal defects. In this paper, we propose a novel methodology (trap-state mapping) to extract trap parameters, based on the mathematical study of stretched exponential recovery kinetics. To demonstrate the effectiveness of the approach, we use it to identify the properties of traps in AlGaN/GaN transistors, submitted to hot-electron stress. After describing the mathematical framework, we demonstrate that the proposed methodology can univocally describe the properties of the distribution of trap states. In addition, to prove the validity and the usefulness of the model, the trap properties extracted mathematically are used as input for TCAD simulations. The results obtained by TCAD closely match the experimental transient curves, thus confirming the accuracy of the trap-state mapping procedure. This methodology can be adopted also on other technologies, thus constituting a universal approach for the analysis of multiexponential trapping kinetics.
The aim of this paper is to improve the understanding of gallium nitride (GaN) high electron mobility transistors (HEMTs) submitted to hard switching operation, with focus on the hot-electron phenomena. This is becoming a hot-topic both for the scientific community and for the industry. The analysis is carried out through a cross-comparison of three different experimental techniques: conventional Pulsed-IV characterization, a novel pulsed-drain current transient (P-DCT) method, and a custom-developed hard switching test protocol. Hard switching analysis was performed through a novel system able to test the device in hard-switching conditions with an unprecedented turn-on slew-rate of 25 V ns−1 on-wafer level. This allows μs to investigate the impact of hard switching in terms of (i) locus trajectory, (ii) dissipated power, and (iii) dynamic R on increase. Furthermore, the accumulation of switching stress is assessed by repeating the experiment with increasing frequency, from 1 kHz to 100 kHz. The extensive cross-analysis offers a novel insight on the degradation mechanisms occurring in power GaN HEMTs. The results collected within this paper allow: (1) to evaluate the dynamic behavior under both soft- and hard-switching stress, thus differentiating off-state and semi-on-state stress; (2) to pinpoint hot-electrons as the main cause of the current collapse observed in semi-on; (3) by comparing the results obtained from P-DCT and Hard Switching Analysis we demonstrate that the hot-electron trapping is a very fast process which can happen in few ns. The related trapping and de-trapping kinetics are investigated in detail. The results described within this paper provide novel insight on the important role of hot-electrons in the dynamic R on increase during hard switching operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.