Seeds of alpine plants are short lived in storage compared with those from lowland populations/related taxa. The lower resistance to ageing in seeds of alpine plants may arise from low selection pressure for seed resistance to ageing and/or damage incurred during seed development due to the cool wet conditions of the alpine climate. Long-term seed conservation of several alpine species using conventional seed banking methods will be problematic.
Aim Populations at the edge of a species' distribution range may differ substantially from central populations. Peripheral populations may have either a high evolutionary potential or be prone to extinction, but the processes driving these outcomes are still unclear. Peripheral plant populations have been the subject of numerous studies and reviews, with many focusing on their genetic characteristics. In this review, we consider the effect of marginality on demographic species-specific traits.Location World-wide.Methods We reviewed the literature based on direct comparisons between central and peripheral plant populations. Strict inclusion criteria were applied to avoid biased analysis that may arise as a result of inaccurate boundary considerations or inappropriate comparisons. We inferred from the published data whether a certain trait had a better performance in central or peripheral populations (reliability of the abundant centre hypothesis, ACH).Results There have not been enough studies on plant performance to allow for generalizations on the effects of marginality on plants. ACH expectations were not met in most cases and specific responses to marginality were observed at the species and population levels. Population and plant size more often met the ACH assumptions, suggesting that most geographically peripheral populations are also ecologically marginal. The availability of resources, the reproductive strategy, the level of ploidy and the ability to cope with interspecific competitors seem to drive the numerous exceptions to the ACH expectations.Main conclusions The large numbers of exceptions to the ACH expectations suggest that a new comprehensive theory is needed to explain the effects of marginality in plants and to identify any general patterns. From the theoretical point of view, we propose that population history and dynamics should be considered when attempting to explain the processes that occur in peripheral plant populations.
Climate warming will lead to a shift from spring to autumn emergence but the extent of this change across species will be driven by seed dormancy status. Ungerminated seeds at the end of autumn will be exposed to shorter winter seasons and lower spring temperatures in a future, warmer climate, but these changes will only have a minor impact on germination. The extent to which climate change will be detrimental to regeneration from seed is less likely to be due to a significant negative effect on germination per se, but rather to seedling emergence in seasons that the species are not adapted to experience. Emergence in autumn could have major implications for species currently adapted to emerge in spring.
From 50 to 90% of wild plant species worldwide produce seeds that are dormant upon maturity, with specific dormancy traits driven by species' occurrence geography, growth form, and genetic factors. While dormancy is a beneficial adaptation for intact natural systems, it can limit plant recruitment in restoration scenarios because seeds may take several seasons to lose dormancy and consequently show low or erratic germination. During this time, seed predation, weed competition, soil erosion, and seed viability loss can lead to plant re‐establishment failure. Understanding and considering seed dormancy and germination traits in restoration planning are thus critical to ensuring effective seed management and seed use efficiency. There are five known dormancy classes (physiological, physical, combinational, morphological, and morphophysiological), each requiring specific cues to alleviate dormancy and enable germination. The dormancy status of a seed can be determined through a series of simple steps that account for initial seed quality and assess germination across a range of environmental conditions. In this article, we outline the steps of the dormancy classification process and the various corresponding methodologies for ex situ dormancy alleviation. We also highlight the importance of record‐keeping and reporting of seed accession information (e.g. geographic coordinates of the seed collection location, cleaning and quality information, storage conditions, and dormancy testing data) to ensure that these factors are adequately considered in restoration planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.