This paper describes an electronically controlled active force control system developed to test the tail rotor actuator of a new medium size helicopter. As for all hydraulic force control systems, the critical control issue is to mitigate the disturbance generated by the actuator velocity. For this particular case, the problem was accrued by the high bandwidth of the tail rotor actuator. To define the optimum control algorithm a model based approach was followed, estimating, when unable to measure directly, mechanical and hydraulic model parameters with a dedicated experimental campaign. A controller was eventually developed able to cope with the severe dynamic disturbances by introducing velocity and acceleration compensation laws. The controller was then implemented in a high recursion rate real time machine interfacing with a servovalve controlling the flow to a hydraulic actuator provided with hydrostatic bearings to minimize the friction force. The actuator force was sensed by a load cell providing the feedback signal for the force servoloop. A critical feature of the control was the need to develop a dedicated complex filter for the velocity signal able to cancel out the signal noise while allowing to retain the correct real time information of the actuator velocity and maintain adequate stability margins.
This paper describes an electronically controlled active force control system developed to test the tail rotor actuator of a new medium size helicopter. As for all hydraulic force control systems, the critical control issue is to mitigate the disturbance generated by the actuator velocity. For this particular case, the problem was accrued by the high bandwidth of the tail rotor actuator. To define the optimum control algorithm a model based approach was followed, estimating, when unable to measure directly, mechanical and hydraulic model parameters with a dedicated experimental campaign. A controller was eventually developed able to cope with the severe dynamic disturbances by introducing velocity and acceleration compensation laws. The controller was then implemented in a high recursion rate real time machine interfacing with a servovalve controlling the flow to a hydraulic actuator provided with hydrostatic bearings to minimize the friction force. The actuator force was sensed by a load cell providing the feedback signal for the force servoloop. A critical feature of the control was the need to develop a dedicated complex filter for the velocity signal able to cancel out the signal noise while allowing to retain the correct real time information of the actuator velocity and maintain adequate stability margins.
The paper describes the initial results of a research activity aimed at developing a high integrity mechatronic system for UAVs primary flight controls able to ensure the necessary flight safety and to enhance the system availability by implementing appropriate prognostic functions. In this system a flight control surface is driven by two parallel rollerscrews, on their turn driven by brushless motors equipped with gearhead and clutch; the motors electric drives are controlled by dual redundant electronic units performing closed loop position control as a function of the commands received from the flight control computer. Provisions are taken in the motor drives to provide damping in the event of simultaneous failure of both actuators. The electronic units perform control, diagnosis and prognosis of the actuation system and mutually exchange data via a cross channel data link. System prognosis is made by dedicated algorithms processing the control and feedback signals obtained in flight and during preflight checks. As a whole, a smart mechatronic system is obtained providing high integrity control of an aerodynamic surface with dual mechanical link, dual power source and quadruplex control, similarly to a fly-by-wire hydraulic flight control. The paper first addresses the critical design issues associated with the electromechanical actuation of flight control surfaces, briefly reviews alternative solutions proposed for jam-tolerant electromechanical actuators, then outlines configuration, characteristics and performance of the mechatronic actuation system, and presents a summary of its behaviour under normal, degraded, fault developing and failure conditions.
Aircraft maintenance is one of the most important cost items faced by the operators of air fleets and is a major contributor to the aircraft life cycle cost. An aircraft fly-by-wire flight control system has a total of primary flight control actuators ranging from 10 to 20 depending on the aircraft type, with a failure rate of 1/1000 flight-hours; therefore, a health monitoring system for primary flight control actuators, able to recognize an actuator degradation in its early stage could greatly contribute to optimize the maintenance operations, reduce the airplane downtime and prevent missions interruptions.This note presents the initial part of an ongoing research project aimed at developing a prognostic and health management system for fly-by-wire primary flight control actuators. A key feature of the project is to develop a PHM system for these actuators suitable for the flight control actuators of legacy airplanes, which are poised to operate for still a long time, and not only for those of new aircraft. The primary flight control actuators of fly-by-wire flight control systems of existing aircraft are electrohydraulic servoactuators with a typical configuration and complement of transducers, and there is no practical possibility of introducing additional sensors. For this reason, the research activity was directed towards the study of algorithms able to identify faults only by using the already available information of the servoactuators state variables.The implemented algorithms are a combination of mathematical and neural network based ones, and the identification of degradations was performed by the analysis of the response of the servoactuators to a sequence of selected stimuli provided in preflight or postflight. The servovalve current and the feedback position are processed by dedicated algorithms in order to obtain significant indicators of the servocatuator health condition. The values of the indicators obtained during the sequence of stimuli are analyzed in combination with those obtained in the past.This is performed by the neural network part of the algorithm which allows a reliable identification of presence and of type of a degradation.The results obtained from the initial part of the research activity are interesting and encouraging. Individual degradations of the servoactuator parameters have so far been addressed and the algorithms for identifying them have been developed. All that makes up the foundations of the future research activity which will be focused on analyzing the effects of simultaneous multiple degradations and to the estimation of the remaining useful life.
The paper presents an innovative hydraulic power generation system able to enhance performance, reliability and survivability of hydraulic systems used in military jet engines, as well as to allow a valuable power saving. This is obtained by a hydraulic power generation system architecture that uses variable pressure, smart control, emergency power source and suitable health management procedures. A key issue is to obtain all these functions while reducing to a minimum the number of additional components with respect to the conventional hydraulic power generation systems. The paper firstly presents the state-of-art of these systems and their critical issues, outlines the alternative solutions, and then describes architecture, characteristics and performance of the hydraulic power generation system that was eventually defined as a result of a research activity aimed at moving beyond the present state-of-art in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.